591 research outputs found
Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2
Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies
IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland
After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc.) in avalanche risk management, was initiated. <P style='line-height: 20px;'> The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. <P style='line-height: 20px;'> The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes
Deep Chandra Observations of the Pulsar Wind Nebula Created by PSR B0355+54
We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind
nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks
total exposure, performed over an 8 month period). We investigated the spatial
and spectral properties of the emission coincident with the pulsar, compact
nebula (CN), and extended tail. We find that the CN morphology can be
interpreted in a way that suggests a small angle between the pulsar spin axis
and our line-of-sight, as inferred from the radio data. On larger scales,
emission from the 7' (2 pc) tail is clearly seen. We also found hints of two
faint extensions nearly orthogonal to the direction of the pulsar's proper
motion. The spectrum extracted at the pulsar position can be described with an
absorbed power-law + blackbody model. The nonthermal component can be
attributed to magnetospheric emission, while the thermal component can be
attributed to emission from either a hot spot (e.g., a polar cap) or the entire
neutron star surface. Surprisingly, the spectrum of the tail shows only a
slight hint of cooling with increasing distance from the pulsar. This implies
either a low magnetic field with fast flow speed, or particle re-acceleration
within the tail. We estimate physical properties of the PWN and compare the
morphologies of the CN and the extended tail with those of other bow shock PWNe
observed with long CXO exposures.Comment: 11 pages, 8 figure
Gallot-Tanno Theorem for closed incomplete pseudo-Riemannian manifolds and applications
We extend the Gallot-Tanno Theorem to closed pseudo-Riemannian manifolds. It
is done by showing that if the cone over a manifold admits a parallel symmetric
tensor then it is Riemannian. Applications of this result to the
existence of metrics with distinct Levi-Civita connections but having the same
unparametrized geodesics and to the projective Obata conjecture are given. We
also apply our result to show that the holonomy group of a closed
-manifold does not preserve any nondegenerate splitting of
.Comment: minor correction
VIPP1 rods engulf membranes containing phosphatidylinositol phosphates
In cyanobacteria and plants, VIPP1 plays crucial roles in the biogenesis and repair of thylakoid membrane protein complexes and in coping with chloroplast membrane stress. In chloroplasts, VIPP1 localizes in distinct patterns at or close to envelope and thylakoid membranes. In vitro, VIPP1 forms higher-order oligomers of >1 MDa that organize into rings and rods. However, it remains unknown how VIPP1 oligomerization is related to function. Using time-resolved fluorescence anisotropy and sucrose density gradient centrifugation, we show here that Chlamydomonas reinhardtiiVIPP1 binds strongly to liposomal membranes containing phosphatidylinositol-4-phosphate (PI4P). Cryo-electron tomography reveals that VIPP1 oligomerizes into rods that can engulf liposomal membranes containing PI4P. These findings place VIPP1 into a group of membrane-shaping proteins including epsin and BAR domain proteins. Moreover, they point to a potential role of phosphatidylinositols in directing the shaping of chloroplast membranes
Recommended from our members
Nuclear resonance tomography with a toroid cavity detector
A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties
- …