16 research outputs found

    Fetuin-a influences vascular cell growth and production of proinflammatory and angiogenic proteins by human perivascular fat cells.

    No full text
    AIMS/HYPOTHESIS: Fetuin-A (alpha2-Heremans-Schmid glycoprotein), a liver-derived circulating glycoprotein, contributes to lipid disorders, diabetes and cardiovascular diseases. In a previous study we found that perivascular fat cells (PVFCs) have a higher angiogenic potential than other fat cell types. The aim was to examine whether fetuin-A influences PVFC and vascular cell growth and the expression and secretion of proinflammatory and angiogenic proteins, and whether TLR4-independent pathways are involved. METHODS: Mono- and co-cultures of human PVFCs and endothelial cells were treated with fetuin-A and/or palmitate for 6-72 h. Proteins were quantified by ELISA and Luminex, mRNA expression by real-time PCR, and cell growth by BrDU-ELISA. Some PVFCs were preincubated with a nuclear factor κB NFκBp65 inhibitor, or the toll-like receptor 4 (TLR4) inhibitor CLI-095, or phosphoinositide 3-kinase (PI3K)/Akt inhibitors and/or stimulated with insulin. Intracellular forkhead box protein O1 (FoxO1), NFκBp65 and inhibitor of κB kinase β (IKKβ) localisation was visualised by immunostaining. RESULTS: PVFCs expressed and secreted IL-6, IL-8, plasminogen activator inhibitor 1 (PAI-1), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF)-BB, monocyte chemotactic protein-1 (MCP-1), vascular endothelial growth factor (VEGF), placental growth factor (PLGF) and hepatocyte growth factor (HGF). Fetuin-A upregulated IL-6 and IL-8, and this was potentiated by palmitate and blocked by CLI-095. Immunostaining and electrophoretic mobility shift assay (EMSA) showed partial NFκBp65 activation. MCP-1 was upregulated and blocked by CLI-095, but not by palmitate. However, HGF was downregulated, which was slightly potentiated by palmitate. This effect persisted after TLR4 pathway blockade. Stimulation of insulin-PI3K-Akt signalling by insulin resulted in nuclear FoxO1 extrusion and HGF upregulation. Fetuin-A counteracted these insulin effects. CONCLUSIONS/INTERPRETATION: Fetuin-A and/or palmitate influence the expression of proinflammatory and angiogenic proteins only partially via TLR4 signalling. HGF downregulation seems to be mediated by interference with the insulin-dependent receptor tyrosine kinase pathway. Fetuin-A may also influence angiogenic and proinflammatory proteins involved in atherosclerosis

    Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of ptch-mutant mice via caMKII

    No full text
    Basal cell carcinoma (BCC) is the most common skin tumor in humans. Although BCCs rarely metastasize, they can cause significant morbidity due to local aggressiveness. Approximately 20% of BCCs show signs of spontaneous regression. The understanding of molecular events mediating spontaneous regression has the potential to reduce morbidity of BCC and, potentially, other tumors, if translated into tumor therapies. We show that BCCs induced in conditional Ptchr flox/floxERT2 +/- knockout mice regress with time and show a more differentiated phenotype. Differentiation is accompanied by Wnt5a expression in the tumor stroma, which is first detectable at the fully developed tumor stage. Coculture experiments revealed that Wnt5a is upregulated in tumor-adjacent macrophages by soluble signals derived from BCC cells. In turn, Wnt5a induces the expression of the differentiation marker K10 in tumor cells, which is mediated by Wnt/Ca 2+ signaling in a CaMKII-dependent manner. These data support a role of stromal Wnt5a in BCC differentiation and regression, which may have important implications for development of new treatment strategies for this tumor. Taken together, our results establish BCC as an easily accessible model of tumor regression. The regression of BCC despite sustained Hedgehog signaling activity seems to be mediated by tumor-stromal interactions via Wnt5a signaling

    Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells

    Get PDF
    Inhibition of Hedgehog (HH)/GLI signalling in cancer is a promising therapeutic approach. Interactions between HH/GLI and other oncogenic pathways affect the strength and tumourigenicity of HH/GLI. Cooperation of HH/GLI with epidermal growth factor receptor (EGFR) signalling promotes transformation and cancer cell proliferation in vitro. However, the in vivo relevance of HH-EGFR signal integration and the critical downstream mediators are largely undefined. In this report we show that genetic and pharmacologic inhibition of EGFR signalling reduces tumour growth in mouse models of HH/GLI driven basal cell carcinoma (BCC). We describe HH-EGFR cooperation response genes including SOX2, SOX9, JUN, CXCR4 and FGF19 that are synergistically activated by HH-EGFR signal integration and required for in vivo growth of BCC cells and tumour-initiating pancreatic cancer cells. The data validate EGFR signalling as drug target in HH/GLI driven cancers and shed light on the molecular processes controlled by HH-EGFR signal cooperation, providing new therapeutic strategies based on combined targeting of HH-EGFR signalling and selected downstream target genes. © 2012 EMBO Molecular Medicine

    A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells.

    No full text
    The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment

    Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury

    No full text
    Tumor cure with conventional fractionated radiotherapy is 65%, dependent on tumor cell-autonomous gradual buildup of DNA double strand break (DSB) misrepair. Here we report single dose radiotherapy (SDRT), a disruptive technique that ablates >90% of human cancers, operates a distinct dual-target mechanism, linking acid sphingomyelinase (ASMase)-mediated microvascular perfusion defects to DNA unrepair in tumor cells to confer tumor cell lethality. ASMase-mediated microcirculatory vasoconstriction post-SDRT conferred an ischemic stress response within parenchymal tumor cells, with reactive oxygen species triggering the evolutionarily conserved SUMO Stress Response, specifically depleting chromatin-associated free SUMO3. Whereas SUMO3, but not SUMO2, was indispensible for homology-directed repair (HDR) of DSBs, HDR loss-of-function post-SDRT yielded DSB unrepair, chromosomal aberrations and tumor clonogen demise. Vasoconstriction blockade with the endothelin-1 inhibitor BQ-123, or ROS scavenging post-SDRT using peroxiredoxin-6 overexpression or the SOD-mimetic tempol, prevented chromatin SUMO3 depletion, HDR loss-of-function and SDRT tumor ablation. We also provide evidence of mouse to human translation of this biology in a randomized clinical trial, showing 24Gy SDRT, but not 3x9Gy fractionation, coupled early tumor ischemia/reperfusion to human cancer ablation. The SDRT biology provides opportunities for mechanism-based selective tumor radiosensitization via accessing SDRT/ASMase signaling, as current studies indicate this pathway is tractable to pharmacologic intervention
    corecore