3,244 research outputs found

    Optimal read/write memory system components

    Get PDF
    Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer

    Migration of Mouse 3T3 Fibroblasts in Response to a Serum Factor

    Full text link

    Effects of active musical engagement during physical exercise on anxiety, pain and motivation in patients with chronic pain

    Get PDF
    The experience of anxiety is central to the development of chronic pain. Music listening has been previously shown to exert analgesic effects. Here we tested if an active engagement in music making is more beneficial than music listening in terms of anxiety and pain levels during physical activity that is often avoided in patients with chronic pain. We applied a music feedback paradigm that combines music making and sports exercise, and which has been previously shown to enhance mood. We explored this method as an intervention to potentially reduce anxiety in a group of patients with chronic pain (N = 24, 20 female and 4 men; age range 34 - 64, M = 51.67, SD = 6.84) and with various anxiety levels. All participants performed two conditions: one condition, Jymmin, where exercise equipment was modified with music feedback so that it could be played like musical instruments by groups of three. Second, a conventional workout condition where groups of three performed exercise on the same devices but where they listened to the same type of music passively. Participants’ levels of anxiety, mood, pain and self-efficacy were assessed with standardized psychological questionnaires before the experiment and after each condition. Results demonstrate that exercise with musical feedback reduced anxiety values in patients with chronic pain significantly as compared to conventional workout with passive music listening. There were no significant overall changes in pain, but patients with greater anxiety levels compared to those with moderate anxiety levels were observed to potentially benefit more from the music feedback intervention in terms of alleviation of pain. Furthermore, it was observed that patients during Jymmin more strongly perceived motivation through others. The observed diminishing effects of Jymmin on anxiety have a high clinical relevance, and in a longer term the therapeutic application could help to break the Anxiety Loop of Pain, reducing chronic pain. The intervention method, however, also has immediate benefits to chronic pain rehabilitation, increasing the motivation to work out, and facilitating social bonding

    Distinct patterns of thought mediate the link between brain functional connectomes and well-being

    Get PDF
    Ongoing thought patterns constitute important aspects of both healthy and abnormal human cognition. However, the neural mechanisms behind these daily experiences and their contribution to well-being remain a matter of debate. Here, using resting-state fMRI and retrospective thought sampling in a large neurotypical cohort (n = 211), we identified two distinct patterns of thought, broadly describing the participants’ current concerns and future plans, that significantly explained variability in the individual functional connectomes. Consistent with the view that ongoing thoughts are an emergent property of multiple neural systems, network-based analysis highlighted the central importance of both unimodal and transmodal cortices in the generation of these experiences. Importantly, while state-dependent current concerns predicted better psychological health, mediating the effect of functional connectomes, trait-level future plans were related to better social health, yet with no mediatory influence. Collectively, we show that ongoing thoughts can influence the link between brain physiology and well-being

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping

    Full text link
    Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A midinfrared peak centered at ~ 5000 cm−1^{-1} was observed in the x=0 antiferromagnetic sample. The peak diminishes and softens as hole doping is increased. The origin of the photoinduced absorption peak is atributted to the photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited charge carriers, whose binding energy decreases with increasing hole doping. The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR

    Curvature invariants in type N spacetimes

    Get PDF
    Scalar curvature invariants are studied in type N solutions of vacuum Einstein's equations with in general non-vanishing cosmological constant Lambda. Zero-order invariants which include only the metric and Weyl (Riemann) tensor either vanish, or are constants depending on Lambda. Even all higher-order invariants containing covariant derivatives of the Weyl (Riemann) tensor are shown to be trivial if a type N spacetime admits a non-expanding and non-twisting null geodesic congruence. However, in the case of expanding type N spacetimes we discover a non-vanishing scalar invariant which is quartic in the second derivatives of the Riemann tensor. We use this invariant to demonstrate that both linearized and the third order type N twisting solutions recently discussed in literature contain singularities at large distances and thus cannot describe radiation fields outside bounded sources.Comment: 17 pages, to appear in Class. Quantum Gra

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte
    • 

    corecore