2,408 research outputs found

    Muon-induced neutrons do not explain the DAMA data

    Get PDF
    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC/MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φnν=1.0×10−9\Phi_n^\nu = 1.0\times10^{-9} cm−2^{-2} s−1^{-1}. We predict 3.49×10−53.49\times10^{-5} counts/day/kg/keV, which accounts for less than 0.3%0.3\% of the DAMA signal modulation amplitude.Comment: 6 pages, 4 figures, accepted for publication in PR

    Curvature invariants in type N spacetimes

    Get PDF
    Scalar curvature invariants are studied in type N solutions of vacuum Einstein's equations with in general non-vanishing cosmological constant Lambda. Zero-order invariants which include only the metric and Weyl (Riemann) tensor either vanish, or are constants depending on Lambda. Even all higher-order invariants containing covariant derivatives of the Weyl (Riemann) tensor are shown to be trivial if a type N spacetime admits a non-expanding and non-twisting null geodesic congruence. However, in the case of expanding type N spacetimes we discover a non-vanishing scalar invariant which is quartic in the second derivatives of the Riemann tensor. We use this invariant to demonstrate that both linearized and the third order type N twisting solutions recently discussed in literature contain singularities at large distances and thus cannot describe radiation fields outside bounded sources.Comment: 17 pages, to appear in Class. Quantum Gra

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte

    Severe Plastic Deformation and Phase Transformations in High Entropy Alloys: A Review

    Get PDF
    This review discusses an area of expertise that is at the intersection of three large parts of materials science. These are phase transformations, severe plastic deformation (SPD), and high-entropy alloys (HEA). First, SPD makes it possible to determine the borders of single-phase regions of existence of a multicomponent solid solution in HEAs. An important feature of SPD is that using these technologies, it is possible to obtain second-phase nanoparticles included in a matrix with a grain size of several tens of nanometers. Such materials have a very high specific density of internal boundaries. These boundaries serve as pathways for accelerated diffusion. As a result of the annealing of HEAs subjected to SPD, it is possible to accurately determine the border temperature of a single-phase solid solution area on the multicomponent phase diagram of the HEA. Secondly, SPD itself induces phase transformations in HEAs. Among these transformations is the decomposition of a single-phase solid solution with the formation of nanoparticles of the second phase, the formation of high-pressure phases, amorphization, as well as spinodal decomposition. Thirdly, during SPD, a large number of new grain boundaries (GBs) are formed due to the crystallites refinement. Segregation layers exist at these new GBs. The concentration of the components in GBs differs from that in the bulk solid solution. As a result of the formation of a large number of new GBs, atoms leave the bulk solution and form segregation layers. Thus, the composition of the solid solution in the volume also changes. All these processes make it possible to purposefully influence the composition, structure and useful properties of HEAs, especially for medical applications
    • …
    corecore