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Several recent studies have shown that intermittent coherent structures are a common feature

of edge magnetized plasmas [1]. Such structures, large compared to typical turbulent scales,

can significantly contribute to the high cross-field particle and energy transport in fusion exper-

iments. In this contribution we will focus on the particular issue of energy transfers in drift wave

turbulence. Since a net transfer of energy must be accompanied by a finite phase coherence be-

tween the involved structures, a bicoherence analysis, which provides a direct measurement of

nonlinear phase coupling, is often used to characterize it [2, 3]. Although the physical process

happens in k and not in ω space [4], experimental diagnostics usually suffer from a very lim-

ited spatial resolution. Thus, frequency-based bicoherence techniques are generally performed

along with attempts to connect k and ω representations [2]. In this contribution we will present

results obtained from a direct wavenumber-based bicoherence analysis, performed on measure-

ments from an azimuthal array of 64 probes, in the linear magnetized helicon device VINETA

[5]. In order to refine the description of spatiotemporal intermittent behaviour, a wavelet bico-

herence [6] is used in both k and ω space. The autobicoherence is a normalized function, which

is close to unity when three waves satisfy the resonance condition ω1 + ω2 = ω , k1 + k2 = k,

and Φ1 +Φ2 = Φ+const. The k-autobicoherence reads:

[bW (a1,a2)]
2 =

|BW (a1,a2)|
2

[
∫
|Ws(a1,X)Ws(a2,τ)|2dX ][

∫
|Ws(a,X)|2dX ]

, (1)

where BW is the wavelet bispectrum defined as:

BW (a1,a2) =
∫

W ∗
s (a,X)Ws(a1,X)Ws(a2,X)dX . (2)

In these equations, Ws(a,X) is the spatial wavelet transform of the signal s(x), and a, a1 and a2

are wavelet scale lengths, which satisfy the relation 1/a = 1/a1 +1/a2. In the present analysis,

a Morlet wavelet is used.

In the following we focus on the analysis of the weakly turbulent state depicted in Fig. 1.

The spatiotemporal plot reveals irregular structures, non-periodic in time. From the wavelet k-

power spectrum, various mode numbers are found to co-exist or alternate in time. The dynamics

is dominated by mode numbers m = 4-6 (Fig. 2). Averaging the wavelet ω-spectrum over the
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Figure 1: Spatiotemporal density fluctuations of drift waves turbulence, measured with an az-

imuthal 64 probe array. Discharge parameters are B=69 mT, PAr=0.3 Pa, PRF=2.6 kW.

Figure 2: Temporal evolution of the mode

number for the regime depicted in Fig 1.

Figure 3: Temporal evolution of the fre-

quency for the regime depicted in Fig. 1.

64 probes, a similar time evolution is found in the frequency domain, with a main frequency

in the range 3-4 kHz (Fig. 3). Since several modes and frequencies exist simultaneously, the

bicoherence will be used in order to detect whether phase coupling occurs between wave triplets.

Working with the whole data set leads to an average bicoherence, which is unlikely to give

much information regarding the turbulent state under investigation (see e.g. Ref [6]). The total

k-bicoherence is obtained by integrating the autobicoherence over all scales at each time instant.

Its numerical value is not fundamental, since it depends on the chosen calculation grid.

Fig. 4 clearly shows strong temporal variations of the total bicoherence. We notice that the

locations of the maxima and minima of the total bicoherence follow an evolution very similar to

the temporal evolution of the frequency, Fig. 3, and to a less extent to the evolution of the mode

number, Fig. 2. The dashed line in Fig. 4 represents the total statistical noise due to the wavelet

decomposition. It is calculated using Eq.(7) of Ref. [6], which is an upper bound. Thus, a larger
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bicoherence level can be regarded as a reliable signature of phase coupling.
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Figure 4: Time evolution of the total k-

bicoherence. The dashed line indicates

the maximum noise level.

In the following we focus on a smaller time win-

dow from t = 1 to 2 ms in order to investigate how

the bicoherence level is increased at this time in-

terval (similar results are found as well, e.g., in the

interval 3.4-4 ms). In this interval, a first analysis

based on the averaged f− and k− spectra shows the

existence of phase coupling in both spectra (Fig. 5).

More precisely, the k-bicoherence shows couplings

between m = 1 and m = 2−6 (horizontal structure),

between m = 6 and m = 1− 3 (vertical structure),

and between m = 2 and m = 3. The f -bicoherence

shows couplings between 4kHz and 2, 3, 6, and 8kHz, and also between 2kHz and lower fre-

quencies. However, these figures don’t take into account the statistical noise, leading to an

overestimation of the bicoherence level, especially at low scales as it will be shown later.

Figure 5: f - and k-autobicoherence for the time interval t = 1−2 ms.

To get insight into the dynamics of the coupling, it is necessary to further decompose the time

interval. In the following, the k-bicoherence is calculated at each time instant, and averaged over

short time intervals. The summed bicoherence at three selected intervals is plotted in Fig. 6,

along with the corresponding wavenumber spectra. Although the maximum noise level is very

high, especially at small wavenumbers, several bicoherence peaks can be seen exceeding the

noise level. Looking at the first time interval (t1 = 1.3− 1.45 ms), one notices that while the

wavenumber spectrum is dominated by mode numbers 4, 5, and 6, the main bicoherence level

is observed at wavenumbers corresponding to m=1, 2, and 3. Although the bicoherence level
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does not look significant with respect to the noise level, especially in the case of m=1, it is

noticeable that the amplitudes of these modes are increased in the wavenumber spectrum when

calculated in the following time interval (t2 = 1.45− 1.6 ms). Considering the whole figure,

it seems reasonable to conclude that small wavenumbers grow due to an energy transfer from

higher mode numbers: m = 1 is fed by the interactions between m = 4 and m = 5, and/or between

m = 5 and m = 6, m = 2 by the interactions between m = 4 and m = 6, according to the phase

coupling criterion k1 + k2 = k. While the spectra broaden, the energy is diffused into a wide

range of scales, which is a characteristic of a transition to turbulence.
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Figure 6: k−power spectra (left column)

and summed bicoherence (right column)

at three selected time intervals. Dots indi-

cate the maximum statistical noise level.

In conclusion, it is worth noting that these results

are in very good agreement with the hypothesis of

an inverse cascade of energy in drift wave turbu-

lence, predicted by theoretical work [7]. Although

the present paper focuses on the k-bicoherence,

preliminary results show a good agreement with

frequency-based analysis, as well as with a comple-

mentary analysis based on 3D fluid simulations. Di-

rect cascading will be investigated in further steps.
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