289 research outputs found

    Substituted property in expropriation of real estate: the case of Poland

    Get PDF
    Motivation: Substituted property is a concept appearing, among other places, in the real property expropriation procedure. Its most frequent use is in the context of granting an equivalent of expropriated property. Historically, this concept has been used in reference to different regulation.Aim: In this article the statutory definition of substituted land (parcel) has been found and its ongoing pertinence subjected to analysis.Results: A new definition of substituted property is proposed along with amendment of the provisions of the Real Property Management Act (1997), one which may contribute to popularizing the concept of substituted property as an equivalent of expropriated real estate

    Dynamic and Static Calibration of Ultra-Low-Voltage, Digital-Based Operational Transconductance Amplifiers

    Get PDF
    The calibration of the effects of process variations and device mismatch in Ultra Low Voltage (ULV) Digital-Based Operational Transconductance Amplifiers (DB-OTAs) is addressed in this paper. For this purpose, two dynamic calibration techniques, intended to dynamically vary the effective strength of critical gates by different modulation strategies, i.e., Digital Pulse Width Modulation (DPWM) and Dyadic Digital Pulse Modulation (DDPM), are explored and compared to classic static calibration. The effectiveness of the calibration approaches as a mean to recover acceptable performance in non-functional samples is verified by Monte-Carlo (MC) post-layout simulations performed on a 300 mV power supply, nW-power DB-OTA in 180 nm CMOS. Based on the same MC post-layout simulations, the impact of each calibration strategy on silicon area, power consumption, and OTA performance is discussed

    Modelo do descasamento (Mismatch) entre transistores MOS: [tese]

    Get PDF
    Tese (Doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-graduação em Engenharia ElétricaDiversos modelos teóricos para o descasamento entre dispositivos na tecnologia MOS foram propostos desde a década de '80, sendo que geralmente estes pecam ou pela simplicidade, sendo válidos apenas sob condições de operação específicas, ou por resultarem em expressões muito complexas, o que torna necessário o uso de pesados recursos computacionais. Esta tese propõe uma abordagem inovadora para a modelagem do descasamento dos transistores de efeito de campo de porta isolada (MOSFETs), chegando a resultados melhores e mais abrangentes que outras propostas já publicadas. Para tanto, as variações microscópicas na corrente que flui pelo dispositivo, resultado das flutuações na concentração de dopantes na região ativa, são contabilizadas levando-se em conta a natureza não-linear do transistor. O resultado é um modelo compacto que prevê o descasamento com grande exatidão e de forma contínua, em todas as condições de operação do transistor, da inversão fraca à forte, e da região linear à saturação, necessitando apenas dois parâmetros de ajuste. Duas versões de circuitos de teste foram desenvolvidas e implementadas em diversas tecnologias, como forma de se obter suporte experimental para o modelo. A versão mais avançada possibilita a caracterização elétrica, de forma totalmente automática, de um grande número de dispositivos. O uso deste modelo substitui com vantagens a tradicional simulação Monte Carlo, que exige grandes recursos computacionais e consome muito tempo, além de oferecer uma excelente ferramenta de projeto manual, como é demonstrado através do desenvolvimento de um conversor digital-analógico, cujo resultado experimental corroborou a metodologia empregada

    Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6)

    Get PDF
    Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l.) during the Cloud and Aerosol Characterization Experiment (CLACE 6) in February and March 2007. During mixed phase cloud events ice crystals from 5–20 micro m were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI). During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR) were analyzed for size and composition by the two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT) and a commercial Aerosol Time-of-Flight Mass Spectrometer (ATOFMS, TSI Model 3800). During CLACE 6 the SPLAT instrument characterized 355 individual IR that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 IR. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS) and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094). The measurements showed that mineral dust was strongly enhanced in the ice particle residues. Close to all of the SPLAT spectra from ice residues did contain signatures from mineral compounds, albeit connected with varying amounts of soluble compounds. Similarly, close to all of the ATOFMS IR spectra show a mineral or metallic component. Pure sulfate and nitrate containing particles were depleted in the ice residues. Sulfate and nitrate was found to dominate the droplet residues (~90% of the particles). The results from the two different single particle mass spectrometers were generally in agreement. Differences in the results originate from several causes, such as the different wavelength of the desorption and ionisation lasers and different size-dependent particle detection efficiencies

    Low-voltage, low-area, nW-power CMOS digital-based biosignal amplifier

    Get PDF
    This paper presents the operation principle and the silicon characterization of a power efficient ultra-low voltage and ultra-low area fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA). Measured results in 180nm CMOS prototypes show that the proposed BioDIGOTA is able to work with a supply voltage down to 400 mV, consuming only 95 nW. Owing to its intrinsically highly-digital feature, the BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22× times compared to the current state of the art, while keeping reasonable system performance, such as 7.6 NEF with 1.25 μVRMS input referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of CMRR and 55 dB of PSRR

    Low-Voltage, Low-Area, nW-Power CMOS Digital-Based Biosignal Amplifier

    Get PDF
    This paper presents the operation principle and the silicon characterization of a power efficient ultra-low voltage and ultra-low area fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA). Measured results in 180nm CMOS prototypes show that the proposed BioDIGOTA is able to work with a supply voltage down to 400 mV, consuming only 95 nW. Owing to its intrinsically highly-digital feature, the BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art, while keeping reasonable system performance, such as 7.6 NEF with 1.25 μVRMS input referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of CMRR and 55 dB of PSRR
    corecore