1,433 research outputs found
Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys
Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small
Recommended from our members
Selective methane oxidation over promoted oxide catalysts. Quarterly report, March 1 - May 31, 1996
Series of catalysts consisting of MoO{sub 3}, V{sub 2}O{sub 5}, TiO{sub 2}, and SnO{sub 2} impregnated onto oxide supports consisting of SiO{sub 2} (Cab-O-Sil), TiO{sub 2} or SnO{sub 2} were previously prepared and tested for the selective oxidation of methane to oxygenates, and it was found that the V{sub 2}O{sub 5}/SiO{sub 2} catalyst was the most active and most selective toward the formation of formaldehyde. These catalysts have been characterized by laser Raman spectroscopy after dehydration and during the methane oxidation reaction with a CH{sub 4}/02 = 10/1 reaction mixture at 500{degrees}C in a continuous flow in situ reaction cell. With the V{sub 2}O{sub 5}/SiO{sub 2} catalyst (the most active catalyst among those studied), no significant structural changes were revealed by in situ Raman analyses, indicating that the fully oxidized surface sites were related to the high formaldehyde selectivivity. Over the V{sub 2}O{sub 5}/TiO{sub 2} and V{sub 2}O{sub 5}/SnO{sub 2} catalysts, CO and CO{sub 2} were the principal products produced by oxidation of methane. For the first time, in situ Raman analysis clearly showed that for these latter catalysts, the surface vanadium(V) oxide species were partially reduced under the steady-state reaction conditions. The performance of the V{sub 2}O{sub 5}/TiO{sub 2}/SiO{sub 2} catalyst was similar to that of the V{sub 2}O{sub 5}TiO{sub 2} catalyst, consistent with the earlier observation that vanadia was largely bound to the titania overlayer. It appears that formaldehyde selectivity decreased with increasing catalyst reducibility, but no direct correlation of catalyst activity with reductibility was observed
Recommended from our members
Selective methane oxidation over promoted oxide catalysts. Quarterly report, December 1, 1995--February 29, 1996
In a systematic study with a CH{sub 4}/air reactant mixture at 600 C and 0.1 MPa, it is demonstrated that among eight Cab-O-Sil supported redox transition metal oxide catalysts, a V{sub 2}O{sub 5}/SiO{sub 2} catalyst exhibited the highest productivities of formaldehyde and methanol. The effect of steam on enhancing the space time yields of the oxygenates was observed with the catalysts that were studied with this third component in the reaction mixture. With the vanadia-containing catalyst, it was shown that a loading of 2 wt% of V{sub 2}O{sub 5} on SiO{sub 2} produced the highest conversion of methane from a CH{sub 4}/air/steam = 4/1/1 reactant mixture and the highest productivities of both CH{sub 3}OH and HCHO. It was also shown that increasing the reactant flow rate (thereby decreasing the contact time) increased the space time yield of methanol but decreased the overall methane conversion level
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
The Effect of Vehicle Fuel Economy Standards on Technology Adoption
Many countries are tightening passenger vehicle fuel economy standards. The literature on passenger vehicle standards has used structural models to estimate their welfare effects. This paper provides the first empirical evidence on the effects of recently tightened fuel economy standards on technology adoption. Specifically, it investigates changes in the rate and direction of technology adoption, that is, the extent to which technology is used to increase fuel economy at the expense of other vehicle attributes. We find that recent U.S. and European standards have both increased the rate of technology adoption and affected the direction of technology adoption. Producers reduced horsepower and torque compared to a counterfactual in which fuel economy standards remained unchanged. We estimate opportunity costs from reduced horsepower and torque to be of similar magnitude as the gains from fuel savings
The design, construction and performance of the MICE scintillating fibre trackers
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan
Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap
Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from
hadronic Z0 decay events produced in e+e- annihilations. A subsample of these
jets is identified which exhibits a large gap in the rapidity distribution of
particles within the jet. After imposing the requirement of a rapidity gap, the
gluon jet purity is 86%. These jets are observed to demonstrate a high degree
of sensitivity to the presence of color reconnection, i.e. higher order QCD
processes affecting the underlying color structure. We use our data to test
three QCD models which include a simulation of color reconnection: one in the
Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman
in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection
models can describe our gluon jet measurements only if very large values are
used for the cutoff parameters which serve to terminate the parton showers, and
that the description of inclusive Z0 data is significantly degraded in this
case. We conclude that color reconnection as implemented by these two models is
disfavored. The signal from the Herwig color reconnection model is less clear
and we do not obtain a definite conclusion concerning this model. In a separate
study, we follow recent theoretical suggestions and search for glueball-like
objects in the leading part of the gluon jets. No clear evidence is observed
for these objects.Comment: 42 pages, 18 figure
W Boson Polarisation at LEP2
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln
events are measured from data recorded by the OPAL detector at LEP. This
information is used calculate polarised differential cross-sections and to
search for CP-violating effects. Results are presented for W bosons produced in
e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The
average fraction of W bosons that are longitudinally polarised is found to be
(23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +-
0.1)%. All results are consistent with CP conservation.Comment: 20 pages, 3 figures, Submitted to Phys. Letts.
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
- …