86 research outputs found

    Interacting populations : hosts and pathogens, prey and predators

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007The interactions between populations can be positive, neutral or negative. Predation and parasitism are both relationships where one species benefits from the interaction at the expense of the other. Predators kill their prey instantly and use it only for food, whereas parasites use their hosts both as their habitat and their food. I am particularly interested in microbial parasites (including bacteria, fungi, viri, and some protozoans) since they cause many infectious diseases. This thesis considers two different points in the population-interaction spectrum and focuses on modeling host-pathogen and predator-prey interactions. The first part focuses on epidemiology, i. e., the dynamics of infectious diseases, and the estimation of parameters using the epidemiological data from two different diseases, phocine distemper virus that affects harbor seals in Europe, and the outbreak of HIV/AIDS in Cuba. The second part analyzes the stability of the predator-prey populations that are spatially organized into discrete units or patches. Patches are connected by dispersing individuals that may, or may not differ in the duration of their trip. This travel time is incorporated via a dispersal delay in the interpatch migration term, and has a stabilizing effect on predator-prey dynamics.This work has been supported by the US National Science Foundation (DEB-0235692), the US Environmental Protection Agency (R-82908901), the Ocean Ventures Fund, and the Academic Programs Office

    The stage-structured epidemic : linking disease and demography with a multi-state matrix approach model

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Theoretical Ecology 4 (2011): 301-319, doi:10.1007/s12080-010-0079-8.Stage-structured epidemic models provide a way to connect the interacting processes of infection and demography. Reproduction and development can replenish the pool of susceptible hosts, and demographic structure leads to heterogeneous transmission and disease risk. Epidemics, in turn, can increase mortality or reduce fertility of the host population. Here we present a framework that integrates both demography and epidemiology in models for stage-structured epidemics. We use the vec-permutation matrix approach to classify individuals jointly by their demographic stage and infection status. We describe demographic and epidemic processes as alternating in time with a periodic matrix models. The application of matrix calculus to this framework allows for the calculation of R0 and sensitivity analysis.P.K. acknowledges support of UNESCO-L’Or´eal Fellowship ”For Women in Science”, Bill and Melinda Gates Foundation, National Institute of Health Grant R01-GM083983-01, National Science Foundation Grant 0742373. H.C. acknowledges support from National Science Foundation Grant DEB-0816514 and the Ocean Life Institute

    Interacting populations : hosts and pathogens, prey and predators

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2007.Includes bibliographical references.The interactions between populations can be positive, neutral or negative. Predation and parasitism are both relationships where one species benefits from the interaction at the expense of the other. Predators kill their prey instantly and use it only for food, whereas parasites use their hosts both as their habitat and their food. I am particularly interested in microbial parasites (including bacteria, fungi, viri, and some protozoans) since they cause many infectious diseases. This thesis considers two different points in the population-interaction spectrum and focuses on modeling host-pathogen and predator-prey interactions. The first part focuses on epidemiology, i. e., the dynamics of infectious diseases, and the estimation of parameters using the epidemiological data from two different diseases, phocine distemper virus that affects harbor seals in Europe, and the outbreak of HIV/AIDS in Cuba. The second part analyzes the stability of the predator-prey populations that are spatially organized into discrete units or patches. Patches are connected by dispersing individuals that may, or may not differ in the duration of their trip. This travel time is incorporated via a dispersal delay in the interpatch migration term, and has a stabilizing effect on predator-prey dynamics.by Petra Klepac.Ph.D

    Contagion! The BBC Four Pandemic - The model behind the documentary.

    Get PDF
    To mark the centenary of the 1918 influenza pandemic, the broadcasting network BBC have put together a 75-min documentary called 'Contagion! The BBC Four Pandemic'. Central to the documentary is a nationwide citizen science experiment, during which volunteers in the United Kingdom could download and use a custom mobile phone app called BBC Pandemic, and contribute their movement and contact data for a day. As the 'maths team', we were asked to use the data from the app to build and run a model of how a pandemic would spread in the UK. The headline results are presented in the TV programme. Here, we document in detail how the model works, and how we shaped it according the incredibly rich data coming from the BBC Pandemic app. We have barely scratched the depth of the volunteer data available from the app. The work presented in this article had the sole purpose of generating a single detailed simulation of a pandemic influenza-like outbreak in the UK. When the BBC Pandemic app has completed its collection period, the vast dataset will be made available to the scientific community (expected early 2019). It will take much more time and input from a broad range of researchers to fully exploit all that this dataset has to offer. But here at least we were able to harness some of the power of the BBC Pandemic data to contribute something which we hope will capture the interest and engagement of a broad audience

    fluEvidenceSynthesis: An R package for evidence synthesis based analysis of epidemiological outbreaks.

    Get PDF
    Public health related decisions often have to balance the cost of intervention strategies with the benefit of the reduction in disease burden. While the cost can often be inferred, forward modelling of the effect of different intervention options is complicated and disease specific. Here we introduce a package that is aimed to simplify this process. The package allows one to infer parameters using a Bayesian approach, perform forward modelling of the likely results of the proposed intervention and finally perform cost effectiveness analysis of the results. The package is based on a method previously used in the United Kingdom to inform vaccination strategies for influenza, with extensions to make it easily adaptable to other diseases and data sources

    Effect of evidence updates on key determinants of measles vaccination impact: a DynaMICE modelling study in ten high-burden countries.

    Get PDF
    BACKGROUND: Model-based estimates of measles burden and the impact of measles-containing vaccine (MCV) are crucial for global health priority setting. Recently, evidence from systematic reviews and database analyses have improved our understanding of key determinants of MCV impact. We explore how representations of these determinants affect model-based estimation of vaccination impact in ten countries with the highest measles burden. METHODS: Using Dynamic Measles Immunisation Calculation Engine (DynaMICE), we modelled the effect of evidence updates for five determinants of MCV impact: case-fatality risk, contact patterns, age-dependent vaccine efficacy, the delivery of supplementary immunisation activities (SIAs) to zero-dose children, and the basic reproduction number. We assessed the incremental vaccination impact of the first (MCV1) and second (MCV2) doses of routine immunisation and SIAs, using metrics of total vaccine-averted cases, deaths, and disability-adjusted life years (DALYs) over 2000-2050. We also conducted a scenario capturing the effect of COVID-19 related disruptions on measles burden and vaccination impact. RESULTS: Incorporated with the updated data sources, DynaMICE projected 253 million measles cases, 3.8 million deaths and 233 million DALYs incurred over 2000-2050 in the ten high-burden countries when MCV1, MCV2, and SIA doses were implemented. Compared to no vaccination, MCV1 contributed to 66% reduction in cumulative measles cases, while MCV2 and SIAs reduced this further to 90%. Among the updated determinants, shifting from fixed to linearly-varying vaccine efficacy by age and from static to time-varying case-fatality risks had the biggest effect on MCV impact. While varying the basic reproduction number showed a limited effect, updates on the other four determinants together resulted in an overall reduction of vaccination impact by 0.58%, 26.2%, and 26.7% for cases, deaths, and DALYs averted, respectively. COVID-19 related disruptions to measles vaccination are not likely to change the influence of these determinants on MCV impact, but may lead to a 3% increase in cases over 2000-2050. CONCLUSIONS: Incorporating updated evidence particularly on vaccine efficacy and case-fatality risk reduces estimates of vaccination impact moderately, but its overall impact remains considerable. High MCV coverage through both routine immunisation and SIAs remains essential for achieving and maintaining low incidence in high measles burden settings

    Nine challenges in incorporating the dynamics of behaviour in infectious diseases models.

    Get PDF
    Traditionally, the spread of infectious diseases in human populations has been modelled with static parameters. These parameters, however, can change when individuals change their behaviour. If these changes are themselves influenced by the disease dynamics, there is scope for mechanistic models of behaviour to improve our understanding of this interaction. Here, we present challenges in modelling changes in behaviour relating to disease dynamics, specifically: how to incorporate behavioural changes in models of infectious disease dynamics, how to inform measurement of relevant behaviour to parameterise such models, and how to determine the impact of behavioural changes on observed disease dynamics

    Designing a multi-layered surveillance approach to detecting SARS-CoV-2: A modelling study

    Get PDF
    Background: Countries achieving control of COVID-19 after an initial outbreak will continue to face the risk of SARS-CoV-2 resurgence. This study explores surveillance strategies for COVID-19 containment based on polymerase chain reaction tests. Methods: Using a dynamic SEIR-type model to simulate the initial dynamics of a COVID-19 introduction, we investigate COVID-19 surveillance strategies among healthcare workers, hospital patients, and community members. We estimate surveillance sensitivity as the probability of COVID-19 detection using a hypergeometric sampling process. We identify test allocation strategies that maximise the probability of COVID-19 detection across different testing capacities. We use Beijing, China as a case study. Results: Surveillance subgroups are more sensitive in detecting COVID-19 transmission when they are defined by more COVID-19-specific symptoms. In this study, fever clinics have the highest surveillance sensitivity, followed by respiratory departments. With a daily testing rate of 0.07/1000 residents, via exclusively testing at fever clinic and respiratory departments, there would have been 598 [95% eCI: 35, 2154] and 1373 [95% eCI: 47, 5230] cases in the population by the time of first case detection, respectively. Outbreak detection can occur earlier by including non-syndromic subgroups, such as younger adults in the community, as more testing capacity becomes available. Conclusions: A multi-layer approach that considers both the surveillance sensitivity and administrative constraints can help identify the optimal allocation of testing resources and thus inform COVID-19 surveillance strategies.</ns3:p

    Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK.

    Get PDF
    BACKGROUND: To mitigate and slow the spread of COVID-19, many countries have adopted unprecedented physical distancing policies, including the UK. We evaluate whether these measures might be sufficient to control the epidemic by estimating their impact on the reproduction number (R0, the average number of secondary cases generated per case). METHODS: We asked a representative sample of UK adults about their contact patterns on the previous day. The questionnaire was conducted online via email recruitment and documents the age and location of contacts and a measure of their intimacy (whether physical contact was made or not). In addition, we asked about adherence to different physical distancing measures. The first surveys were sent on Tuesday, 24 March, 1 day after a "lockdown" was implemented across the UK. We compared measured contact patterns during the "lockdown" to patterns of social contact made during a non-epidemic period. By comparing these, we estimated the change in reproduction number as a consequence of the physical distancing measures imposed. We used a meta-analysis of published estimates to inform our estimates of the reproduction number before interventions were put in place. RESULTS: We found a 74% reduction in the average daily number of contacts observed per participant (from 10.8 to 2.8). This would be sufficient to reduce R0 from 2.6 prior to lockdown to 0.62 (95% confidence interval [CI] 0.37-0.89) after the lockdown, based on all types of contact and 0.37 (95% CI = 0.22-0.53) for physical (skin to skin) contacts only. CONCLUSIONS: The physical distancing measures adopted by the UK public have substantially reduced contact levels and will likely lead to a substantial impact and a decline in cases in the coming weeks. However, this projected decline in incidence will not occur immediately as there are significant delays between infection, the onset of symptomatic disease, and hospitalisation, as well as further delays to these events being reported. Tracking behavioural change can give a more rapid assessment of the impact of physical distancing measures than routine epidemiological surveillance
    • …
    corecore