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hosts and pathogens, prey and predators

by
Petra Klepac
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in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Biological Oceanography

Abstract

The interactions between populations can be positive, neutral or negative. Predation
and parasitism are both relationships where one species benefits from the interaction
at the expense of the other. Predators kill their prey instantly and use it only for
food, whereas parasites use their hosts both as their habitat and their food. I am
particularly interested in microbial parasites (including bacteria, fungi, viri, and some
protozoans) since they cause many infectious diseases.

This thesis considers two different points in the population-interaction spectrum
and focuses on modeling host-pathogen and predator-prey interactions. The first part
focuses on epidemiology, i. e., the dynamics of infectious diseases, and the estimation
of parameters using the epidemiological data from two different diseases, phocine
distemper virus that affects harbor seals in Europe, and the outbreak of HIV/AIDS
in Cuba. The second part analyzes the stability of the predator-prey populations
that are spatially organized into discrete units or patches. Patches are connected by
dispersing individuals that may, or may not differ in the duration of their trip. This
travel time is incorporated via a dispersal delay in the interpatch migration term, and
has a stabilizing effect on predator-prey dynamics.

Thesis supervisor: Michael G. Neubert
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Chapter 1

Introduction

1.1 Interactions between populations

Populations interact in different ways. Their interactions can be positive, neutral

or negative. Predation and parasitism are both antagonistic relationships where one

species benefits from the interaction at the expense of the other. Predators kill their

prey instantly and use it only for food, whereas parasites use their hosts both as

their habitat and their food. Some parasites, including bacteria, fungi, viri, and

some protozoans, are microbial and replicate within the host (microparasites). Other

pathogens, such as ticks, nematodes, and tapeworms, have no within host replication

and are known as macroparasites. I am particularly interested in microparasites since

they are pathogenic agents that cause many infectious diseases.

Most models for predator-prey relationships assume prey and predators have rel-

atively equivalent sizes and life history characteristics. This approach is applicable to

a variety of organisms, from rabbits and foxes, to various macroparasites. But, when

the host is very large with relatively slow dynamics, and the pathogen is small and

multiplies rapidly inside the host, the traditional predator-prey approach is not very

useful. Here the dynamics of such host-pathogen interactions, typical for infectious

diseases, is studied using a different mathematical approach. Given the fast dynamics

of the pathogen, and the slow dynamics of the host, we assume that the host pop-

ulation is constant and we ask questions about the spread of the pathogen between

infected and not-infected segments of the host population.

In this thesis, I focus on two extremes along this consumer resource sprectrum

and contrast host-pathogen and predator-prey interactions.



The first part (Chapters 2 - 4) focuses on the host-pathogen end of the spectrum

with Chapters 2 and 3 studying the Phocine Distemper Virus that affects harbor

seals in Europe, and Chapters 4 focusing on the outbreak of HIV/AIDS in Cuba.

The second part (Chapters 5 and 6) studies theoretical models for spatially-extended

predator-prey populations.

In this introductory chapter I discuss the basic biology of Phocine Distemper

Virus outbreaks, the pathology of the virus, the population biology of harbor seals,

the available data set, and the motivation for the spatial predator-prey.

1.2 Epidemiology

An outbreak of a disease that spreads rapidly and infects a substantial portion of

the population in a region over a short period of time is known as an epidemic.

Major epidemics in the past include the bubonic plague ("Black Death") that spread

from Asia throughout Europe in 14-th century. It is estimated that bubonic plague

has killed to one third of Europeans between 1346 and 1350. Another example is

smallpox, which was brought to North America by invading Spaniards and in some

cases reduced indigenous population to one tenth of its preepidemic size - the Indian

population of Mexico is thought to have been reduced from 30 million in 1519 to only

3 million in 1530. The "Spanish flu" H1N1 influenza epidemic of 1918-1919 caused

10-20 millions of deaths worldwide.

Major epidemics today include malaria, tuberculosis and HIV/AIDS, which com-

bined kill over 6 million people each year. At the end of 2004, there were 40 million

people infected with HIV, 5 million infected in 2004 alone (UNAIDS, 2004).

When an epidemic affects an animal population, it is called an epizootic. An

example of a recent major epizootics is Phocine Distemper Virus that caused the death

of up to 60% of harbor seals (Phoca vitulina) in certain locations in the North Sea in

1988 and 2002 (Reineking, 2002, 2003; Hirk6nen et al., 2006). Other species within

the morbilliviridae have been implicated in mass mortalities of bottlenose dolphins

(Tursiops truncatus) along the U.S. Atlantic coast (1987-88) and Gulf of Mexico

(1993-94), striped dolphins (Stenella coeruleoalba) in the Mediterranean Sea (1990-

92) and common dolphins (Delphinus delphis) in the Black Sea (1994) (Osterhaus,

1988; Dietz et al., 1989; Domingo et al., 1990; Kennedy, 1998).
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Figure 1-1: Maps of 1988 and 2002 PDV outbreaks in northern Europe. Circles
indicate how many seals died in a particular region. After Markon et al. (2003).

1.2.1 Phocine distemper virus

Phocine distemper virus (PDV) was first described in 1988, when it killed over 23, 000

harbor seals (Phoca vituli'na) in northern Europe (Hark6nen et al., 2006). The 'seal

plague' started at the Danish island of Anholt (see Figure 1-1) and the virus quickly

spread to populations in Sweden, Netherlands, England, Scotland and Ireland (Dietz

et al., 1989). It resulted in the largest recorded epizootic of any marine mammal

population with an estimated mortality of 56-58% in large regions (Dietz et al., 1989;

Heide--J0rgensen & Hark6nen, 1992; Hdrk6nen et al., 2002; Harding et al., 2002).

PDV caused another outbreak in 2002 (see Figure 1-1), killing 33,000 harbor

seals iii Baltic, Wadden and North Seas between May and October (Reineking, 2002;

Hirk6nen et al., 2006). Both epizootics originated at the same location, the island of

Anholt. but it appeared 23 days later in 2002. The population size on the European

continent in 2002 was about twice that of 1988, where in the UK it was at comparable

levels both years. On the percent basis, the two outbreaks had comparable mortality.

1.2.2 Population biology of harbor seals

The dynamics of an infectious disease is determined by the size and structure of the

host population, its life history, and the behavior of individuals. All of these factors

affect; the transmission of the virus, and influence the dynamics of the disease.
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Figure 1-2: Harbor seal, Phoca vitulina.
http://www.wildlife.shetland.co.uk/.

Table 1.1: Harbor seal population sizes before and after the 1988 and 2002 epizootics
in Europe.

Location
Kattegat-Skagerrak

Wadden Sea
European continent

UK
Grand total

Pre-1988 Post-1988 Pre-2002 Post-2002
12,700 5,600 23,000 11,750
16,840 7,000 35,660 18,980
36,800 18,770 62,070 33,490
53,000 48,000 53,000 50,000
82,000 59,500 116,000 82,800

Population size

There are five recognized subspecies of harbor seal distributed widely over the north-

ern hemisphere. Current estimates of population sizes are imperfect and often out-

dated, so it is hard to say how many harbor seals there are in the region. In the

eastern Atlantic region there were about 80, 000 before the 1988 epizootic, of which

36,800 were estimated to be on the European continent (Hdrkonen et al., 2006). Ar-

eas of greatest abundances were Great Britain (53, 000), the Wadden Sea (16, 840)

and Kattegat-Skagerrak (12, 700) (Hdrk6nen et al., 2006). After the PDV outbreak,

European harbor seal population dropped to an estimated 59, 500 (see Table 1.1 for

more details). During the next 14 years the population recovered, and reached a size

double that of pre-1988 epizootic on the continent (62, 000 in 2002), and comparable

levels to the pre-1988 epizootic in the UK (see Table 1.1). The estimated total pop-

ulation size in 2002 was 116, 000 seals (which was reduced to about 83, 000 after the

second PDV outbreak).



Demography

Common seals have a yearly pupping season that runs from late May to early August,
and peaks in late June/early July in Europe. Females mature at 3 to 4 years; males

mature a year later. Mothers suckle their pups during a 4-week nursing period, after

which the pups undergo a post-weaning fast lasting 3 - 6 weeks, when they start to

catch their own food. After the pups are weaned, seals mate in water. Fertilization

is followed by embryonic diapause (prolonged period of delayed implantation) that

lasts about 2.5 months. The total gestation period is around 10.5 months. Pregnancy

rates exceed 85% (Burns, 2002) and 80 - 97% of the mature females bear a pup each

year (Hark6nen & Heide-Jergensen, 1990). The single pup per female per year poses

a major constraint on population growth. Heide-Jorgensen et al. (1992a) constructed

a matrix population model and calculated that in the stable age distribution the

asymptotic growth rate A was 1.112. Annual survivorship of adult harbor seals in

the absence of PDV is around 90% for males (data for females suggest 95% survival)

(Hark6nen & Heide-Jorgensen, 1990).

Dispersal

For determining epidemic behavior, besides knowing the total population size, it is

also important to know the population structure, mixing of individuals, as well as

the mixing of subpopulations. Telemetry studies (Thompson & Harwood, 1990) and

long-term study of freeze-branded animals (Hark6nen & Harding, 2001) suggest a
high degree of site fidelity among adult harbor seals. None of 163 branded seals were

observed to haul out beyond a 32-km radius from the site where they were branded

as pups, (Hark6nen & Harding, 2001). On the smaller scale, there is a strong spatial

segregation by age and sex, as well as different migration tendencies between sexes and

ages. A genetic study of micro-satellite polymorphism (Goodman, 1998) suggests six

distinct population units: Ireland-Scotland, English east coast, Wadden Sea, Western

Scandinavia, East Baltic and Iceland.

Haul-out behavior

Seals give birth, rear their offspring and molt on land. That introduces seasonality
to the seal haul-out behavior, which peaks during the pupping and molting seasons
in late spring and summer. The molt occurs during midsummer to early fall, after



Cetaceans

Figure 1-3: Phylogenetic tree
showing the relationships between
the different morbilliviri based on
partial sequence of one of the pro-
tein coding genes (the P gene).
The branch lengths are propor-
tional to the mutational differ-
ences between the viruses and
the hypothetical common ancestor
that existed at the nodes in the
tree. Source: Barrett (1999).

cessation of the breeding season. At that time up to 57% of a colony can be found on

land (Heide-Jergensen & Hirk6nen, 1992). There are differences in haul-out timing

among age and sex cohorts. Yearlings usually molt earliest, followed by subadults,
then adult females and adult males molt last (Burns, 2002). Therefore, the number of

animals on land depends on age, sex, and the time of year (Thompson, 1989; Hirk6nen

et al., 1999, 2002). Seals also haul out throughout the year but less frequently and in

smaller numbers than in the summer.

1.2.3 Phocine distemper pathology

The agent responsible for mass die-offs of seals, phocine distemper virus (Cosby et al.,
1988; Mahy et al., 1988; Osterhaus et al., 1989), belongs to the Morbilliviridae genus

(see Figure 1-3); a group of RNA viruses that cause infectious diseases in mammals

(Barrett et al., 1993; Forsyth et al., 1998; Barrett, 1999) and measles in humans

(Barrett, 1987). PDV is most closely related to the canine distemper virus (CDV)

(Osterhaus et al., 1988; Kennedy et al., 1988; Rima et al., 1992) that can cause similar

infections in other seal species (Grachev et al., 1989; Kennedy et al., 2000). PDV is

thought to be endemic in arctic harp seals (Phoca groenlandica) (Markussen & Have,
1992). In 1987 and 1988 harp seals were observed to migrate as far south as Danish

waters, and are thought to have spread the virus to the previously unexposed harbor

seal population (Goodhart, 1988).

The disease transmits between animals in close contact in the same way a cold

spreads in humans - by inhalation when an infected individual coughs or sneezes



(Kennedy, 1990, 1998). Once in the host, the virus spreads through macrophages,

lymphocytes and thrombocytes and infects various tissues. Since the virus is spread

in air, an infected animal can only spread the disease to its neighbors during haul

outs.

Symptoms of the PDV infection in seals include fever, respiratory problems such as

coughing, nasal discharge, as well as discharge from the eyes, conjunctivitis. Infected

pregnant females abort their pups, and elevated numbers of aborted pups in a certain

area can be an indicator of the presence of PDV. A pup that is orphaned or abandoned

before weaning will die. If the virus enters the central nervous system, infected seals

become disoriented and will be disinclined to move which can cause them to spend

more time on land, and less time in water searching for food. Postmortem findings

include subcutaneous emphysema (air bubbles under the skin) of the head and neck

(Bergman et al., 1990; Munro et al., 1992; Baker, 1992) due to which dead animals

float for a long time before being washed up on land. The disease is confirmed

by blood testing diseased animals or tissue sampling dead animals (Barrett, 1999).

Morbilliviri are known to suppress their host's immune system, thus increasing the risk

of secondary infection by a wide range of agents. Autopsies of dead seals have shown

that the main proximate cause of death is a secondary infection, bacterial pneumonia

caused by Bordetella bronchiseptica (Baker & Ross, 1992; Kennedy, 1998).

In 1988 the disease quickly spread from central Kattegat (see Figure 2-7), where

it appeared in April, to Danish and Dutch Wadden Sea (May), and then to Skagerrak

and German Wadden Sea (June). By mid July seal herds in the Oslo Fjord and the

Baltic were affected. British haul-outs were the last to be hit by disease in August

and September (Dietz et al., 1989). The estimated rate of spread was 3,970 km/year

(McCallum et al., 2003). In each location the epidemic lasted 70-100 days; longer

when haul-outs were less discrete as in the Wadden Sea (Dietz et al., 1989).

1.2.4 Data on haul-out behavior

Harbor seals have been studied at their haul-out sites for decades. During 1978-

1998 aerial surveys were conducted for Swedish and Danish haul-out locations, which

were photographed in the peak haul-out season and seals were later counted from

photographs (Heide-Jorgensen et al., 1992b; Hdirk6nen et al., 1999, 2002). The sex-

related and age-specific seasonal behavior of seals has been inferred by studying 163

freeze-branded animals during 1985-1997 (Hdirk6nen et al., 1999) and 8 VHF-tagged



seals during 1984-1986 (Thompson, 1989).

1.2.5 Epizootic data

Major haul-out locations in the Kattegat-Skagerrak were regularly surveyed for seal

carcasses by biologists and other trained personnel during both epizootic periods

(Hdrk6nen & Heide-Jorgensen, 1990). In the UK, most of the dead seals were re-

ported by the general public via a "hotline" number (http://www.defra.gov.uk/).

The number of reported stranded seals are treated as the 'number of dead seals per

day' which form the epizootic curves (cumulative numbers of dead seals). By compar-

ing the number of seals found dead to numbers of seals in population surveys before

and after the epizootic we can estimate the mortality in each location (Dietz et al.,

1989; Reineking, 2002). For most locations the day that first dead seal appeared is

also known.

This data-set is vulnerable to several sources of observational error. The number

of stranded carcasses depends on wind directions and reporting effort. Carcasses may

float for a while before finally getting washed ashore, so the seals may be lost or

washed up on shores far away from their actual territory and dead seals might be

reported several times (Thompson & Miller, 1992).

The epidemic curves are the only epidemic data available for PDV outbreaks, and

they form a link between the data and the models.

1.2.6 PDV modeling

Chapter 2 presents a model for PDV outbreaks, that includes the information on the

life history of seals, and the transmission of the virus. Using the model, I develop

a way to estimate epidemiological parameters based on the available epizootic data.

Seasonal haul-out behavior influences the mixing between seals and the transmission

of the virus. The process of transmission in Chapter 3 incorporates the haul-out be-

havior, and I use this model to investigate differences in mortality between locations.

1.3 Prey-predator interactions

The most basic models (Lotka, 1926; Volterra, 1931; Nicholson & Bailey, 1935) and

experiments (Gause, 1934) predict instability of predator-prey systems. How do then



predator-prey systems persist stably in nature? The answer most often given is that

the models and experiments omit processes that affect stability in natural systems

(for examples see May, 1973; Hassell, 1978; Crawley, 1992; Mueller & Joshi, 2000).

Natural systems are spatially structured. Populations are often organized into

discrete spatial units or patches that are connected by dispersal (metapopulation

structure). In the traditional approach, dispersal is assumed to occur instantaneously,

leaving the dynamics of the model often unchanged. In reality, individuals spend a

finite amount of time in transit from one patch to another. This travel time can be

incorporated in predator-prey models via a delay in the inter-patch dispersal term.

What are the effects of dispersal delays on the dynamics of the predator--prey

models? To find out, I developed predator-prey models that include dispersal delays.

These models have the form of a system of delayed differential equations. I study the

dynamics of these systems analytically and numerically.

To determine whether the dispersal delays have a stabilizing effect on the predator-

prey equilibrium point, I incorporated dispersal delays into the Lotka-Volterra model.

The equilibrium point of the non-spatial predator-prey Lotka-Volterra model is a

center, i. e., a "neutrally stable" equilibrium surrounded by a family of periodic solu-

tions whose amplitudes depend on the initial conditions. The slightest change to the

model's structure typically results in qualitatively different behavior. For example,

if the growth rate of prey decreases linearly with prey density the equilibrium point

is stable; on the other hand, introducing a saturating (Type II) functional response

turns the equilibrium into an unstable spiral point (Gotelli, 1995). In Chapter 5, I use

this structural instability of the Lotka-Volterra model to show that dispersal delays

stabilize the equilibrium point of the spatially structured Lotka-Volterra model.

However, the the Lotka-Volterra model is considered oversimplified for two rea-

sons. First, in the absence of the predators, the prey grow exponentially without

bound. Second, the per capita rate of consumption of prey by predators grows in

proportion to the prey population size, implying that individual predators can process

prey items infinitely fast. These faults are eliminated in the Rosenzweig--MacArthur

model, which includes a carrying capacity for the prey and a finite prey handling time

for the predators that results in a saturating functional response.

The Rosenzweig-MacArthur model has a more complicated dynamics than the

Lotka--Volterra model. For small values of carrying capacity, the coexistence equilib-

rium point is locally asymptotically stable. As the carrying capacity increases beyond



some threshold value, a Hopf bifurcation occurs, the equilibrium point becomes un-

stable, and trajectories are drawn onto a single stable limit cycle. This destabilization

by increasing prey carrying capacity is known as the 'paradox of enrichment' (Rosen-

zweig, 1971; May, 1972; Gilpin, 1972).

Dispersal delays are strong enough to overcome the destabilizing effect of the

Type II response and can stabilize the coexistence equilibrium of the Rosenzweig-

MacArthur model. For many parameter values, stability persists even in the limit of

infinite carrying capacity. Dispersal delays also help resolve the paradox of enrichment

by reducing the amplitude of oscillations when the equilibrium is unstable.
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Chapter 2

Estimation of the basic

reproductive number, R0

2.1 Introduction

Phocine distemper virus (PDV) caused mass die-offs of European harbor seals (Phoca

vitulina) in 1988 and 2002 (Osterhaus et al., 1988; Mahy et al., 1988; Cosby et al.,

1988; Rima et al., 1992). Both outbreaks started at the Danish island of Anholt in the

spring, and in the following months spread throughout the entire European harbor

seal population, killing more than 23,000 seals in 1988 and 30,000 in 2002 (Hark6nen

et al., 2006). These are the largest epizootics ever reported for any marine mammal

population with estimated mortality of 56 - 58% in large regions (Dietz et al., 1989;

Heide-Jorgensen & Hdirk6nen, 1992; Hirk6nen et al., 2002; Harding et al., 2002).

It is likely that PDV will revisit the harbor seals of Europe. How many seals will

eventually become infected? How fast will the epidemic spread? How long will it last?

What measures should be taken to control or prevent the outbreak? These quantities

are related to the epidemiological parameter known as the basic reproductive number,

Ro.

7Ro is defined as the expected number of new infections caused by a single infected

individual in an entirely susceptible population (Dietz, 1975). As a result, Ro provides

a threshold for whether or not an epidemic will occur. If 7Ro > 1, the number

of infections increases, leading to an epidemic; if Ro < 1, the infection dies out

(no epidemic). Ro also determines the duration of a closed epidemic (Anderson,
1996) as well as its final size (Kermack & McKendrick, 1927; Heesterbeek & Roberts,



1995; Anderson, 1996). The quantity Ro also has applications in developing control

strategies. In order to prevent or contain an epidemic, the proportion of individuals

that needs to be removed from the susceptible pool, either by vaccination or by

culling, is 1 - 1/70 (Anderson, 1996).

The concept of a critical threshold arose from the analysis of mathematical models

for vector borne diseases (Ross, 1911), and directly transmitted diseases (Kermack

& McKendrick, 1927) at the beginning of the last century. But, it was not until the

1980s that the potential of use of Ro in epidemiology and in the control of infec-

tions diseases was fully recognized (Dietz, 1975; Diekmann et al., 1990; Anderson,
1996; Dietz, 1993; Heesterbeek, 2002). This is surprising, as the analogous concept

known as the "net reproductive rate" (denoted by Ro by Dublin & Lotka (1925))

was fully developed for the study of demography and ecology about fifty years before

its widespread application in epidemiology (Sharpe & Lotka, 1911; Dublin & Lotka,
1925). In population biology, Ro is defined as the expected number of offspring that

an individual will produce during its lifetime, or the population growth rate from one

generation to the next (Caswell, 2001).

In this chapter, I focus on Ro in two ways; (i) given a model, how does one

calculate 7Ro, and (ii) given data, can 1 0 be estimated directly, or how does one

estimate individual parameters in the model to determine Ro. In order to estimate

7Z0 for a particular disease, one needs some form of data on the number of cases that

suffer infection from this disease. Epidemic data from naturally occurring wildlife

diseases is often lacking in detail and estimating epidemic parameters is challenging.

In the case of the 1988 and 2002 phocine distemper virus outbreaks, only the number

of stranded seal carcasses were observed. Extensive efforts were made during both

the 1988 and 2002 epizootics to count the seals that died. Time series of stranded

carcasses collected by teams of biologists and other trained personnel in each region

were used to construct cumulative curves (also called epidemic or epizootic curves).

These curves form a link between the data and the models. These epizootic curves,
and a review of both PDV outbreaks can be found in Hirk6nen et al. (2006).

In the next section I present a short review of different calculations of 7Ro, and

of common ways to estimate Ro from data. Based on a model for PDV dynamics,
I develop a new likelihood-based method for estimating Ro from epidemic curves. I

will use simulation results to evaluate accuracy, precision, and the bias of the method.

Using this method, I estimate 7Zo values for different regions, and show that regional



differences in IRo are significant. Further, I investigate the relationship of Ro with

variables that most commonly influence it, such as population size, spatial structure,

timing of infection, and the level of immunity.

2.2 Calculation of 7o

Consider a simple deterministic model where a population of size N is divided into

three epidemic compartments: susceptible individuals S, infective individuals I (i. e.,

individuals that are infectious), and a removed class R that consists of individuals

that were infected but are no longer infectious or susceptible to reinfection. Such

models are often called SIR models. Contacts between individuals are assumed to

be made at random. The disease spreads when an infectious individual contacts and

infects a susceptible. The force of infection A, defined as the probability per unit time

for a, susceptible to become infected (Diekmann & Heesterbeek, 2000), is a product

of three parameters: (i) the contact rate c(N), (ii) the probability that the contact

is with an infective, usually assumed to be I/N, and (iii) the probability p that the

contact between susceptible and infective individuals in fact leads to transmission of

the pathogen, i. e., the probability that the contact is 'successful',

A c(N)Ip
N

The per contact probability of successful transmission p is usually assumed to be

constant.

If the rate of contacts for a given susceptible individual is proportional to the

population size N, c(N) = clN, the force of infection is proportional to the number

of infectives I

A = c1pl = 0I. (2.2)

The proportionality constant, ,, is called the transmission rate; it consists of both

the contact rate and the probability that the contact is successful. The rate at which

new infections occur is assumed proportional to the number of susceptibles S, and is

given by the product AS = OSI.

If individuals recover from infection and become immune at a rate y, we obtain



the standard SIR model

dSdS -SI (2.3a)
dl
d• = 3SI - yI, (2.3b)
dRdR = (2.3c)

first studied by Kermack & McKendrick (1927). (A detailed analysis of this model

can be found in, e. g., Heesterbeek & Roberts (1995); Diekmann & Heesterbeek (2000)

or Brauer & Castillo-Chavez (2001).)

Under model (2.3) a typical infective individual meets and infects O/S susceptible

individuals per unit time, and continues to do so during its expected infective period

1/7, so the total number of secondary infections that individual produces is OS/7.

If at the beginning of the epidemic there are N susceptible individuals, the basic

reproductive number for model (2.3) is

Ro = (2.4)

This type of transmission, where the rate of contacts for a given susceptible is pro-

portional to the population size N, is known as mass action or density-dependent

transmission (Begon et al., 2002; Brauer, 2006).

When the number of contacts per infective per unit time is constant, c(N) = c2,
the process of transmission is known as pseudo-mass-action (e. g.in Swinton et al.,
1998), standard incidence (Brauer, 2006), or frequency-dependent transmission (Thrall

& Antonovics, 1997; Begon et al., 2002). This type of transmission is most commonly

used in modeling sexually transmitted diseases. The force of infection for frequency-

dependent transmission is
c2PI /3I
N (2.5)N N'

where 3 is, again, the transmission rate, but has different units than in equation (2.2).

In this case, the basic reproductive number

7Ro = - (2.6)

is independent of population size.



2.2.1 Survival function

A more general formulation of 7•Z follows directly from its definition. Let l(a) be the

probability that a newly infected individual remains infectious for at least time a,

and let m(a) be the rate of infectiousness by an individual that has been infectious

for a units of time. The number of secondary infections is then given by

R o = 1(a) m(a)da. (2.7)

An identical formulation is found in population biology, where l(a) is survivorship,
that is, the probability of surviving from birth to age a, and m(a) is the rate of

reproduction at age a (e. g. Heesterbeek & Roberts, 1995; Keeling & Grenfell, 2000;

Caswell, 2001).

For model (2.3), the duration of infection is exponentially distributed with the

mean 1/y, so l(a) = exp(--ya). As the transmission rate, 3, does not depend on

how long individuals have been infectious, the rate of infection is the same for all

infectious individuals. Overall rate of infection in (2.3) is /SI, or m(a) = 3S per

infective individual, i. e., 3So at the beginning of the infection. Substituting for l(a)

in m(a) in equation (2.7) gives

zo = e- ' /3 So da = 3(2.8)

This mathematically natural definition of Ro is not always useful for computations,
especially when dealing with more complex models.

2.2.2 Next generation method

In many cases it is useful to distinguish between different classes of infectives. For
example, in the model for the HIV/AIDS epidemic in Chapter 4, there are three infec-

tive compartments - undiagnosed HIV cases, diagnosed HIV cases, and AIDS cases.
In other situations, multiple infective classes can be used to capture the underlying
age structure or spatial structure. For this type of model, Ro can be derived using
the next generation method (Diekmann et al., 1990; de Jong et al., 1994; Diekmann
& Heesterbeek, 2000; van den Driessche & Watmough, 2002), where IRo is given by



the spectral radius, p, (dominant eigenvalue) of the next generation matrix, FV-1 :

Ro = P [FV-'] . (2.9)

There is an analogous expression in discrete time demographic models of the form

n(t + 1) = An(t) n(t). The vector n(t) describes the state of the population at time t,

and let the projection matrix An consist of the transition matrix Tn and reproduction

matrix Fn, so that An = Tn + Fn. Then

Ro = p [Fn(I - Tn)-l] . (2.10)

To find the next generation matrix FV -1 , first assume there are n compartments

of which m are infective. Let x = xl,..., x, be the number of individuals in each

compartment. Let r(x) be the rate at which newly infected individuals enter com-

partment i, V2 (x) be the rate of transfer of individuals into compartment i by all other

means (including the transfer of infectious individuals from one infective compartment

to another), and 17 (x) be the rate at which individuals are leaving compartment i.

Define 2V (x) as V (x) = •-7(x) - Vi+(x). The rate of change of compartment i is then

xi = -i - Vi(x). We can then form the next generation matrix FV - 1 by

F = [ (o) and V = (xo) , (2.11)

where i,j = 1,..., m and x0 is the disease free equilibrium, at which the popula-

tion remains in the absence of the disease. (A detailed description of assumptions,

constraints and proofs of theorems can be found in van den Driessche & Watmough

(2002)). The (j, k) entry of V - is the average amount of time an infective individual

that was introduced into compartment k spends in compartment j during its lifetime.

The (i, j) entry of F is the rate at which infected individuals in compartment j pro-

duce new infections in compartment i. Therefore, the entry (i, k) in the generation

matrix FV - 1 is the expected number of new infections in compartment i produced

by an individual originally introduced in compartment k.

To illustrate this approach, imagine a case where the early stage and late stage of

infection have different transmission rates, 01 and 02. We can model this scenario by



a simple SIR model (or SIIR), with two infectious compartments I, and 12:

dS dS -(13 1 1 r+/3212)S, (2.12a)
dt

dl1
dt 1 1 - 2 2 )S  -7l2, (2.12b)

dl2
= Y1I1 - 72 1 2, (2.12c)dt

dR d = 72 2. 
(2.12d)

dt

All newly infected individuals enter the compartment I, so Fi = (031I + 2122)S, and

F2 = 0. Other movements among the compartments are described by Vi = '1yI and

V2 - '7212 - 7111, giving

Y 1 S 0 /32 So0  and V= 0F and V (2.13)0 0 -71 72[1So + 02So 32So
FV- 1 = 71 2 72 (2.14)

0 0

and Ro = So 0  + +

2.3 Estimation of Ro from data

Contact rates and transmission rates are often difficult to determine from observa-

tions. As a result, Ro is difficult to calculate using equations (2.7) or (2.9). In this

section, I review some alternative approaches to estimating Ro from data. These ap-

proaches either assume an epidemic in a closed population where the infection leads

to immunity or death, or an endemic equilibrium.

2.3.1 Final size equation

In the case of a closed epidemic, there is no influx of susceptible hosts. Unlike the

endemic case, where a pathogen becomes established in a host population, in a closed

epidemic the number of infections, after an initial increase, eventually drops to zero.

The fraction of the individuals that eventually become infected during the epidemic,
the final size of the epidemic, was first analytically determined by Kermack & McK-

endrick (1927). For model (2.3) we can calculate the final size by formally dividing



equation (2.3b) by equation (2.3a), and integrating the expression for dI/dS to find

the orbits in the (S, I) plane

dI = (- + dS, (2.15a)

I = -S+-IlnS+c, (2.15b)

where c is the arbitrary constant of the integration. In other words, orbits are defined

by

V(S, I) = S + I - In S = c. (2.16)

Since none of these orbits reaches the I-axis, S(t) > 0 for all times. The part

of the population that escapes infection is S, = limt,, S(t). At the beginning of

the epidemic (t = 0), all of the individuals are susceptible (S(0) = N), and there

are essentially no infected individuals (I(0) _ 0). As the disease disappears from

the population after some time, there are no infectious individuals at the end of the

epidemic, so I, = limt,, I(t) = 0. The relation V(So, Io) = V(SO, Io) gives

So - In So = S, In S,, (2.17a)

In = So (1 S (2.17b)
S. 7 So

lnS- =Ro -- 1 , (2.17c)
So So

Soo exp o 1 . (2.17d)

The final size of the epidemic, f, is simply f = 1 - S,/So = 1 - s(oo). By rearranging

equation (2.17c), we can obtain a relationship for Ro and f,

Ro= -f) (2.18)
f

For large values of Ro,
f 1- e- RO (2.19)

is a useful approximation of the final size (Figure 2-2). For small Ro, the final size is

approximated by

f • 2(Ro - 1) (2.20)
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Figure 2-1: Estimates of Ro using the final size equation (2.18) for different final sizes
of the epidemic.

which follows from the Taylor expansion of (2.17c) around Ro = 1 (or s(oo) = 1)

(Diekmann & Heesterbeek, 2000, p182).

The use of the final size equation (2.18) for estimating Ro requires knowledge of the

final size of the epidemic. The proportion of the population that is exposed to the virus

during the outbreak can be empirically determined by extensive serological studies.

For the PDV outbreak in harbor seals in Europe such studies are rare, although

some morbillivirus antibody prevalence studies were done on Scottish populations

(e.g. Thompson et al., 1992, 2002; Pomeroy et al., 2005), suggesting that the final

size of the 1988 PDV outbreak in Scotland was 0.5-0.7.

Figure 2-1 shows illustrates the relationship given in equation (2.18) over the range

of all possible final sizes. Note that for f near 1, small errors in the estimate of f will

produce large errors in the estimate or Ro.

2.3.2 Proportion of susceptibles at the endemic equilibrium

When a pathogen invades a host population, the number of susceptible hosts de-

creases. Eventually the system may arrive at an equilibrium, where the rate at which

susceptible individuals are infected is exactly balanced by the rate at which newly

susceptible hosts enter the population (either by birth, immigration, or loss of immu-

nity). This is known as an endemic equilibrium, where the number of susceptible and

to0Ir



(,
N

Z

Figure 2-2: Comparison of the true final size and its approximation given with equa-
tion (2.19).

infective individuals is given by (s, i) = (s*, i*). As the population does not consist en-

tirely of susceptible individuals, 7 0 is not directly applicable to this case. Instead, we

can use the effective reproductive number, R, which is the number of secondary cases

produced in a population not consisting entirely of susceptible individuals (Grenfell

& Dobson, 1995). At equilibrium, each infection will on average result in exactly one

secondary infection, so the effective reproductive number, R, will be equal to unity.

In a homogeneously mixed population, the number of secondary infections will be

proportional to the probability that an infectious individual contacts a susceptible.

In this case, the effective number R is the basic reproductive number Ro decreased

by a fraction of host population that is still susceptible, s, R = Ros (Dietz, 1975;

Anderson, 1996). At equilibrium, R = 1 and s = s*, leading to

7o = - (2.21)

2.3.3 Average age at infection

For a homogeneously mixed, stationary population (where births exactly balance

deaths), at an endemic equilibrium, Ro can be estimated as

LRo 0 -. (2.22)
A



Table 2.1: Summary of Ro calculations.

Ro = description equation number

SSo/7 standard SIR model (2.4)

fo 1(a) m(a)da survival function (2.7)

p(FV- 1) next generation method (2.9)

In(1-f) final size equation (2.18)

1/s* endemic equilibrium (2.21)

L/A average age at infection (2.22)

Here L is life expectancy, A is the mean age at infection, and the infection is immuniz-

ing (Dietz, 1975; Anderson, 1996). If the net population growth rate is positive, the

use of equation (2.22) can lead to overestimation of Ro, as the relevant demographic

time-scale, i. e., the reciprocal of the birth rate, is shorter than life expectancy, espe-

cially when the birth rate is high. For endemic infections in a growing population, a

better approximation is
B

0Ro - A' (2.23)

where B is the reciprocal of the average birth rate (Anderson, 1996).

For all approximations in (2.18)-(2.23), one must also assume homogeneous mixing

in the population. Therefore, estimates of lo obtained from (2.21) or (2.22) would

not be reliable in the case where heterogeneity in host demography affects the contact

process and the transmission of infection.

Phocine distemper virus is not endemic in harbor seals -- the infection seemed

to disappear from the seal population following both the 1988 and 2002 outbreaks
- so we cannot use equations (2.21)-(2.23) to estimate Ro. PDV outbreaks are
short relative to the life-span of this long-lived species, so we can assume that the

population did not grow during the outbreak and consider both outbreaks as closed
epidemics. In theory, we can use the final size equation (2.18) to roughly estimate
7Zo. In practice, the data on the fraction of the population that escapes the infection
comes from serological surveys. Such surveys are rare for European harbor seals,
so there is not enough data to estimate and compare 7Ro for phocine distemper for



different locations in Europe. Approximations of Ro summarized in Table 2.1 do not

apply for PDV, so we need to develop a new method to estimate 70 from the data

that is available - the time-series of the number of seals that have died from PDV.

2.4 Phocine distemper virus dynamics

The methods mentioned in Section 2.3 assume that the epidemic process is deter-

ministic. In reality, there are many random perturbations that can influence the

transmission of the disease and the final size, and those random effects can be par-

ticularly important for small compartmental sizes, or, in the case of seals, for small

haul-out units. In those cases, stochastic models are more appropriate. Stochastic, or

probabilistic, models allow for the use of more sophisticated estimation procedures,

such as maximum-likelihood-type methods that require data on the time-series of the

number of individuals in epidemic compartments.

The time-scale of phocine distemper virus outbreaks is much shorter than the de-

mographic time-scale of harbor seals. Therefore, we can assume that seal populations

do not grow during an outbreak, and we approximate a single PDV outbreak in a

single haul-out location as a closed epidemic. We take a compartmental approach to

modeling PDV dynamics, and we divide the population on day t into susceptible seals

(St), infectious seals (It), and a removed class (Rt), which consists of both immune

and dead seals.

Let the number of seals that become infected on day t (the incidence) be a random

variable Xt. Let xt be the realization of the random variable Xt, i.e. the actual

number of seals infected on that day. After a seal has been infected with PDV, we

assume it experiences a latent period of 3 days (Osterhaus et al., 1988, 1989c; Harder

et al., 1990), during which it is not infectious. Individuals going through the latent

period constitute the exposed class, which is not directly modeled in (2.24). The

model accounts for the exposed class by introducing a delay - the newly infected

individuals enter the infectious class three days after they got infected. The infectious

period lasts 12 days (Osterhaus et al., 1989a,c; Grachev et al., 1989; Harder et al.,

1990), after which a seal either becomes immune or dies. Thus, for given initial



conditions we can compute the epidemic trajectory according to

St+ = St - Xt, (2.24a)

It+l = i t + Xt-3 - Xt-15, (2.24b)

Rt+1 = rt + Xt-15, (2.24c)

where xt is zero for t negative (Heide-Jorgensen & Hirk6nen, 1992).

An individual that is susceptible at time t remains susceptible at time t + 1 only

if it avoids infectious contact with all it infectives. Let p be the probability that a

given infectious seal infects a given susceptible during one day. The probability that

a susceptible does not get infected upon contact with a given infective is then 1 - p,
hence (1 - p)it is the probability of not getting infected by any of the it infectives

at time t. The total probability that a susceptible gets infected on day t is then

1 - (1 - p)it, and this event is independent for each of the st susceptible individuals.

Thus, the random variable Xt that describes new infections is binomially distributed,

Xt - Bin[st, 1 - (1 - p)"i]. (2.25)

This type of formulation dates back to the series of lectures by Reed and Frost in

1928 (first published by Abbey, 1952). The probability of having an epidemic will be

a product of a chain of binomial probabilities of the form (2.25). Hence, this type of

a model is referred to as a chain binomial model (e. g. Bailey, 1957; Daley & Gani,
1999; Andersson & Britton, 2000).

We further assume that the number of seals that die each day, Yt, also is binomially

distributed, with constant probability of dying m.

Yt - Bin[xt_ 15 , m]. (2.26)

For stochastic epidemics in large communities one of two scenarios can occur.

Either a small number of individuals get infected, or there is a major outbreak.

If Ro < 1, a small outbreak may occur; major outbreaks are possible if and only

if Ro > 1 (as stated by the threshold theorem Bartlett, 1960). In this case, the

asymptotic distribution of final sizes of the epidemic consists of two parts, first one

close to zero, and the second one spread around the deterministic final size value (see

histogram in Figure 2-3).
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2.4.1 Pseudo-maximum-likelihood method for estimating Ro

For model (2.24) the basic reproductive number is given by

Ro = 12 p so, (2.27)

where so is the initial susceptible population size. Estimating Ro amounts to esti-

mating the parameter p.

The probability of infection p could be estimated by maximum likelihood methods,

if we knew the number of seals in each compartment for every day of the epizootic. To

see this, let t = 0 be the beginning of the disease outbreak, and let t = T indicate the

day the outbreak ends. Had we observed the number of seals in each class throughout

the outbreak, the likelihood of the observed trajectory would be

T

L(p)= 11 f (xklsk, 1 - (1 - p)ik) (2.28)
k=O

where f is the binomial probability density function,

f(x s,p)= () )pj(1 -p)S-. (2.29)

The maximum likelihood estimate of p would then be the value P which maximizes

L(p).

However, as in most wildlife disease outbreaks, the numbers of susceptibles and

newly infected etc. were not observed every day. Our only observation is the number

of stranded dead seals. Each day a certain number of seals dies from PDV. Out of

this total number of victims, a certain proportion strands ashore, and, finally, some

proportion of the stranded carcasses gets reported. The daily number of reported

stranded carcasses is the only available information on the number of seals that died

each day. The number of seals that gets stranded and reported will depend on many

factors such as the weather conditions, direction of the wind, stranding location,
reporting effort, etc. Therefore, there is inevitably an observational error associated

with the daily number of reported carcasses, and the observational error will vary

from day to day.

I account for the observation error in a simple way. There are two sources for the

information on the total number of seals that have died in the outbreak. One source



is the sum of the daily number of reported strandings. Themore reliable data on the

total number of seals that died comes from census data. Since we know the total

population size before and after the epizootic, we can use the difference in census

data to infer the total death toll. I model the observation error as equal to the

ratio of the total number recovered stranded seals to the difference in census data. I

further assume that the observation error is constant throughout the outbreak and

scale the epidemic curve to match the total number of seals that died according to the

population counts. The scaled daily counts of dead seals are then used to construct

the estimates of 9t, it and it.

To estimate the series of incidence, we equated the observed mortality with its

expectation under (2.26) and find

t Yt+15 (2.30)
m

The incidence cases can only have integer values. Rounding of the series to the

nearest integer introduces the possibility that the number of the total individuals

infected is larger than the initial susceptible population size. Therefore, to keep i

series in integer form, I round the right-hand side of the equation (2.30) to the nearest

integers towards minus infinity using the MATLAB command floor ().

With it in hand we used model (2.24) to reconstruct the series for susceptible

seals

§t+l = §t - xt; ý1 = N. (2.31)

and the series of infectious seals via

•. . Yt+12 - Yt
= t+1 - ; T = 0. (2.32)

We then treat estimates g, i, i as though they were actual observations and estimated

ip by minimizing the negative log-likelihood of the estimates

T

(p) = - In [f (ikkI -( 1 p)k) . (2.33)
k=O

over p. The estimate for the basic reproductive ratio is then 7Io = 12pN.



2.5 Testing the accuracy of the estimation method

Before we use our estimation on the PDV data, it is important to have a sense of

the method's accuracy (how close are the estimates to actual, true value), precision

(how close are the estimates from one another) and potential bias (how far is the

mean of the estimates from the true value). I have tested the method on simulated

epidemic trajectories for a fixed infectious period equal to 12 days over the range

of initial susceptible population size So and Ro, So = (100; 1, 000; 10, 000; 100, 000),
and Ro = (1.5, 3, 6, 12). Figure 2-4 shows estimates of Ro for all the trajectories that

resulted in at least one new infection (when there are no new infections, f(p) = 1 for

all values of p so we can't estimate p this way).

Since model (2.24) is a stochastic one, there is some probability not to have an

outbreak even when one is expected. As a result, when Ro > 1, the distribution of

final sizes is bimodal (as seen in Figure 2-3), consisting of non-outbreaks and out-

breaks. Since the realizations of the model that are non-outbreaks would not observed

in the available data set, I'm setting a threshold of what constitutes an outbreak so

as to unambiguously distinguish between an outbreak and a non-outbreak. I define

this threshold to be 20% of the expected deterministic final size 1 - exp(-Ro), and

indicate it with a dotted line in Figure 2-3. Figure 2-5 summarizes the estimates

from the set of trajectories shown in Figure 2-4 that exceed this threshold. The level

of bias is comparable in both figures, but the discarding of non-outbreak trajectories

reduces the number of outliers, particularly for small values of Ro.

Each box plot in Figure 2-5 represents a summary of estimates of Ro (7 0o)

from 1,000 simulated epidemic trajectories with known parameters. I scaled the

value p in each series of simulations with respect to the initial population size So,
p = 7R.o/(12 So), so that Ro is constant in each graph. (The Ro used in simulations

is shown with horizontal black line.) To eliminate the contributions of the uncertain-

ties of other parameters, I assume all other parameters (except p) are known when

estimating p from the epidemic curves.

The accuracy of the pseudo-maximum likelihood method described in Section 2.4.1

depends on the initial size of the population. The method works poorly for small

population sizes (under 100 individuals), especially for large values of Ro. Figure 2-5

also shows a negative bias; I consistently underestimate the true value of Ro, which

is again most prominent for small population sizes, and large Ro. For example, for

a population of 1000 individuals, in 78% cases of 1 < 1 0o < 1.5, the real value of Ro



100 1000 10000 100000S

-L_

100 1000 10000 100000
So

100 1000 10000 100000
So

2 a

100 1000 10000 100000
SO

Figure 2-4: Accuracy and precision of the pseudo-maximum-likelihood method for
estimating Ro from epidemic curves, for various values of Ro and So, and fixed in-
fectious period (12 days). Each box plot represents a summary of estimates from
1,000 simulations using the Ro value indicated by the black horizontal line. The box
represents the inter-quartile range of the estimates, and the red line is the median.
The whiskers are lines extending from each end of the box to show the extent of the
rest of the data; the maximum length of the whiskers is 1.5 times the inter-quartile
range. Data that fall beyond the ends of whiskers are are shown with red plus signs.

r
F

F -

=4 .=3-i- __T

&, t=z 4
I4-

SI I --Z5~TTT

I- + I I

I- I I -I

rH~
ti -

Li
I- I -I

-I-

F -I

I I I T
I ' ' ' ' I

I I
I I
i I
t -r

j I I

i



Ro = 3

100 1000 10000 100000
S

R0 =6

t

i -- i s

100 1000 10000 100000
SO

100 1000 10000 100000
S

Ro= 12

I I

100 1000 10000 100000
SO

Figure 2-5: Performance of the pseudo-maximum-likelihood method for estimating
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(12 days). Each box plot represents a summary of estimates from 1,000 simulations
using the Jo value indicated by the black horizontal line. Trajectories that do not
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as in Figure 2-4.
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Table 2.2: Precision of the pseudo-maximum likelihood method. For each range
below, simulations were made for 10,000 equally spaced values of Ro and for so =
1000, io = 1, m = 0.6. Trajectories were then used to estimate 7 0o. The entries in the
rows of the table fractions of simulations in each range that resulted with a particular
Ro estimate.

1Ro
<1

1- 1.5
1.5- 2
2- 2.5
2.5- 3
3- 3.5
> 3.5

zRo
1- 1.5 1.5 -2 2- 2.5 2.5- 3 3- 3.5 3.5-4 4-4.5 4.5- 5
1 0 0 0 0 0 0 0
0.78 0.22 0 0 0 0 0 0
0.01 0.79 0.20 0 0 0 0 0
0 0.02 0.74 0.25 0 0 0 0
0 0 0.03 0.65 0.30 0.01 0 0
0 0 0 0.05 0.57 0.34 0.04 0
0 0 0 0 0.02 0.17 0.26 0.55

comes from the same range, and in the other 22% cases it comes the range of larger

values. 1.5 < Ro < 2 (Table 2.2). The negative bias is larger for 3 < 7Ro • 2.5,
when in only 57% of the cases the true Ro lies in the same range, 34% of the cases

3.5 < R7o 4, and for 4% of the cases 4 < 1Ro : 4.5. However, the method does

extremely well for large population sizes (> 100,000), for all values of 7Ro (Figure 2-5.

One source of bias is in the round-off error in the reconstruction of the incidence

series, equation (2.30). Rounding off , to the nearest integer towards minus infinity

inevitably underestimates the final size of the epidemic, thereby underestimating 7Ro.

This bias is strongest for small populations as the contribution of round-off error is

relatively larger. Figure 2-6 compares the final sizes of the epidemic trajectories used

to estimate 7o in Figure 2-5, and the resulting estimated final sizes.

The population sizes of almost all haul-out regions in the data set that I am using

to estimate ZRo of PDV outbreaks fall in the range 1,000 - 10,000 (see Table 2.3 for

details). For these population sizes, we can expect our method to give reliable, but

negatively biased, estimates of 7Ro.

2.6 Ro estimates from 1988 and 2002 outbreaks

I estimated Ro values for 1988 and 2002 outbreaks for the following regions: North
Skagerrak, South Skagerrak, Swedish Kattegat, Danish Kattegat, Limfjord, Baltic,
Dutch Wadden Sea (abbreviated as WS NL), Nieder-Sachsen Wadden Sea (WS NS),
Schleswig-Holstein and Danish Wadden Sea (WS SH&DK), The Wash, Tay, and
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Region
N Skagerrak
S Skagerrak
SW Kattegat
DK Kattegat
Limfjord
Baltic
WS NL
WS NS
WS SH & DK
The Wash
Tay
Moray Firth

1988
N

2,623
n/a

2,884
5,654
1,474

439
1,800
4,602
9,937
6,646

700
1,598

outbreak
D(oo)
1,183

n/a
1,823
3,266

614
218
914

2,634

5,774
3,535

31
200

2002 outbreak
N D(oo)

7,466
2,702
4,518
6,131
1,740

802
7,002

10,042
18,220

6,958
1,171
1,198

4,932
1,485
2,086
1,484

333
127

2,851
4,690
8,747
1,439

363
86

haul-out units

SO5

Figure 2-7
text.

Table 2.3:
outbreaks



Moray Firth (see map in Figure 2-7 for reference).

The population of seals was unexposed to PDV before the 1988 outbreak, as

indicated by serological studies (Osterhaus et al., 1988, 1989b; Thompson et al., 1992).

I therefore assume that the entire population was susceptible at the beginning of the

1988 outbreak (i. e., so = N, io = 1, ro = 0). Exposed individuals acquire life-long

immunity to PDV, so a certain fraction of the 2002 population consists of survivors

of the 1988 epizootic. To calculate the fraction of the 2002 population immune to

PDV, I assume that all of the individuals were exposed to the virus in 1988 (final size

= 1), so all of the survivors from the 1988 epizootic are immune. This assumption

is close to the truth for Kattegat locations, such as Anholt, where over 95 % of the

females were infected, as estimated from the abortion rates and pup survival during

the epizootic year (Heide-Jergensen & Hirkonen, 1992). The population grows at the

rate A and all of the newborn individuals are susceptible (i. e., there is no inherited

immunity). Assuming the 95% survival rate (based on data on survival of adult seals

from Hiirk6nen & Heide-Jorgensen (1990); Heide-Jergensen et al. (1992)) during the

14 years between two outbreaks, yields the fraction of the population immune in 2002

equal to 0.95 14/A14. Average population growth rates (A) for different regions and

estimates of fraction of the population immune to PDV are given in Table 2.4.

In order to reconstruct the incidence series in step (2.30), we need to know the

probability that an infected individual dies from the disease (m). This probability is

equal to the ratio of the number of individuals that have died in the outbreak, D(oo)

(see Table 2.3 for actual numbers), and the total number of individuals that were

infected. In the absence of serological data, I calculated the estimates of epidemio-

logical parameters for a range of final sizes of the epidemic: 0.5, 0.6, 0.7, 0.8, 0.9 and

1, and show the results in Figures 2-8 - 2-10.

Final sizes below 0.5 are not possible for most locations for the observed values of

D(oo). For some localities, even some final sizes larger than 0.5 cannot be observed

for the number of seals that have died in those locations. In that case, graphs for

these locations are left blank for those particular values of final size. For example,
given the number of seals that have died in the 1988 outbreak in SW Kattegat, the

final size of the epizootic for that locality must have been at least 0.7, so there are no

box-plots for final sizes 0.5 and 0.6 in the graph for SW Kattegat in Figure 2-8.

To determine the precision of the estimates, I simulated 1,000 epidemic curves

using the estimated values of parameters for each location. I discarded the non-



Table 2.4: The fraction of the 2002 population immune to PDV was calculated using
population growth rates A and assuming 95% survival rate, and the final size of the
1988 outbreak equal to 1. Assuming that 50% of susceptible seals were exposed to
PDV in 1988 (final size = 0.5) halves the fraction immune in 2002.

Region A fraction immune in 2002
N. Skagerrak 1.14 0.08
S. Skagerrak 1.13 0.09
SW Katt 1.13 0.09
DKKatt 1.06 0.22
Limfjord 1.07 0.19
Baltic 1.05 0.25
WS NL 1.17 0.05
WS NS 1.11 0.11
WS SHDK 1.13 0.09
The Wash 1.06 0.22
Tay 1.04 0.28
Moray Firth 0.99 0.56

outbreak trajectories (ones that did not reach 20% of the approximated final size

1 - exp(-Ro)), and estimated the values of Ro from the remaining trajectories.

Figures 2-8 and 2-10 show the range of estimates in box-plots. Estimates of Ro

values fall in the range 1.4-3.15 for the 1988 outbreak, and 0.9 - 3.76 for the 2002

outbreak (over all final sizes).

2.6.1 Variance of Ro among locations

Figures 2-8 - 2-10 illustrate the variability of estimates within a location. Estimates

also vary among locations. In this section I address the question of whether the differ-

ence in Ro values among locations is due to estimation error or biological significance.

For the 1988 outbreak, the variance of Ro estimates assuming the final size equal

to one is ua2 = 0.103. The variance is smaller for f = 0.7, ao2. = 0.014. Can this

variance in estimates be observed by chance alone (the null hypothesis Ho), or are

the differences in Rio among locations statistically significant? To find out, I did a

randomization test by permuting observations among locations (e. g. Caswell, 2001).

For the 1988 outbreak, the data consists of 11 epidemic curves, and I treat each

recovered seal with its respective relative day of recovery (day since the first seal was

found dead in that location) as a data point. Under Ho, the combination of time-

series of dead seals that consist the observed epidemic curves for different locations
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Figure 2-11: Randomization test for the 1988 outbreak assuming two different values
of final size, f: A) f = 1; B) f = 0.7. Dotted lines represent the variance in R~ from
original data, a 2 = 0.103 and a 7 = 0.014.

is just as likely as any other series, and can be observed by chance alone. To obtain

the distribution of the variance of ?o0 under Ho, I permuted the seals to create new

epidemic curves for each location, by randomly drawing Di(oo) individual dead seals

from the original data set without replacement. (Di(oo) is the total number of seals

that have died in location i given in Table 2.3.) This is repeated 10,000 times and

for each of the 10,000 permutations, I estimate Ro for all locations, calculate the

variance of the estimates, and obtain a distribution of variance shown in Figure 2-11.

For f = 1, the probability of observing the variance in 7Ro that is larger than one

observed in the original data by chance alone is about 1 in 10,000. For f = 0.7, the

probability of observing larger variance than in the original data is less than 0.04.

The randomization test for the 2002 outbreak, shows that the variance in iZ0 values

falls outside of the distribution of variance under Ho. The variance in Ro0 estimates

assuming final sizes f = 1 and f = 0.7 are a2 = 0.35 and a,2. = 0.07, respectively.

Figure 2-12 shows that the probability of observing the variance greater than or equal

to one observed in data by chance alone is less than 1 in 10,000. Therefore, we can

conclude that the observed difference in Ro estimates among locations is statistically

significant.

Since the variance in Ro is significant, the observed difference is a result of a

biological or epidemiological process, or habitat differences. To identify the patterns
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Figure 2-14: Relationship of Ro and the pre-epizootic population size.
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in R~ differences and what influences them, I examine the relationship of Ro to initial

susceptible population size, duration of the epizootic, peak mortality date, degree of

spatial structure, and the level of immunity.

For density-dependent transmission, we expect Ro to be proportional to popula-

tion size, all other parameters being equal. Since the population level on the continent

in 2002 was about double that of 1988, we would expect to observe higher Ro values

on the continent in 2002 than in 1988, assuming that all else were equal. However, Ro

estimates shown in Figure 2-13 show no consistent differences between two outbreaks,

and Ro does not depend on the population size (Figure 2-14).

The relationship of Ro to the duration of the epizootic is shown in Figure 2-

15. Differences in sampling and reporting effort are highest at the beginning and

the end of the epizootic, so I represent the duration of the epizootic (AT) with the

period between the first 5% and last 5% of the dead seals reported for each location

(Hdirk6nen et al., 2006). The higher Ro the faster disease will spread and the shorter

its duration.

Phocine distemper peaked in different times of the year in different regions. I

describe this different timing by T50 , or the Julian day of the year when half of the

final mortality in a particular region was reached. This parameter is more reliable

than the date of the first finding (the day when the first dead seal was reported in

each region) as there is high uncertainty in the reporting at the beginning of the

outbreak. In general, the fraction killed by PDV decreases with T50 and is smallest

for locations where the outbreak started at the latest (Figure 2-16). For the 1988

outbreak, the value of Ro drops in the regions where the outbreak peaked late in

the year (Figure 2-17), suggesting that there might be a seasonal mechanism that

affects the transmission of the virus. For 2002 outbreak, this relationship is obscured

by the Limfjord locality. The Limfjord population suffered an additional source of

mortality in 2002, linked to malnutrition (Karin Harding, personal communication),

that can increase the observed Ro. It has been difficult to discriminate disease-related

mortality from other causes of death, so the contribution of the non-disease-related

mortality to the value of the Limfjord Ro remains unknown.

Timing of infection, together with the topography of the location, can influence

the dynamics of an outbreak. Figure 2-18 groups the locations according to their

sea-bottom substrate, into rocky or sandy regions. In the rocky regions, 7io drops

with the peak mortality date, whereas in the sandy regions this relationship is absent.



Spatial structuring of the epidemic data can also influence the estimate of Ro.

PDV sets up a sequence of local outbreaks, that, once initiated, proceed indepen-

dently. Pooling data from several localities from a larger region into a single epidemic

curve, prolongs the duration of the epizootic in that region and decreases the slope

of the epidemic curve, thereby decreasing Ro. I illustrate this with Danish Kattegat

data from the 2002 outbreak in Figure 2-19, for which the individual epidemic curves

from different haul-out units are available (Hdrk6nen et al., 2006). The larger the

number of the haul-out units with different starting dates of the outbreak included

in the epidemic curve, the smaller Ro. This expected relationship is also observed

for the 1988 outbreak (Figure 2-20), and 7 0 drops as the spatial structuring, i. e.,
the number of haul-out units, in a particular region increases. The pattern disap-

pears in 2002, suggesting that another process, such as immunity, absent in 1988, is

influencing Ro in 2002.

A certain fraction of the 2002 population are the survivors from the 1988 epi-

zootic. It is therefore natural to assume that immunity could play an important role

in the 2002 outbreak, and change the patterns observed in the 1988 outbreak. To

account for immunity, I have estimated the fraction of each population that can be

immune to PDV in 2002 (Table 2.4), and have estimated new Ro values by decreasing

initial susceptible population accordingly. Correcting for immunity did not change

the estimates of Ro significantly (Figure 2-10), because in general the fraction of the

population that was likely to be immune in 2002 is small.

2.7 Discussion

Estimating epidemiological parameters from data is a challenging task. Information

on infectious diseases is frequently lacking in detail, since it is hard to observe the

exact times when individuals become infected and by whom. Data on infectious

diseases in wildlife are even more incomplete than human epidemiological data or

data on diseases in domestic animals. In the case of phocine distemper the only

available data is the number of seals that have died from the disease.

I present a novel method for estimating 1o that can be useful for epidemics where

the number of dead is the only information we observe. Model (2.24) assumes a

closed epidemic, so the method is not applicable for diseases with long infectious

periods, such as HIV/AIDS, where the susceptible population is being replenished



by birth during the outbreak. Even though the method is ad hoc I tried to base it

on the maximum-likelihood framework. Simulation results show that the estimates

are reliable for population sizes in the range covered by the data. The method is

negatively biased, but for the observed population sizes this bias is small. One source

of bias is numerical, due to the round-off error in the reconstruction of the time-series

for incidence. Additional sources of bias can come from assumptions about infectious

period and from observational errors. We assume a 3-day latent period followed by

a 12-day infectious period. In reality, infectious period can vary between 5 and 16

days (Harder et al., 1990), which can affect overall transmission during the period of

infection and thereby influence the estimated number of secondary cases. Another

source of error is "built into" our series of dead seals, which we use to reconstruct the

time series of incidence and infectious case counts. Data on seals that have died from

PDV is collected by counting carcasses that stranded ashore, which depends on the

weather conditions and sampling and reporting effort, so there is inevitably an error

associated with the observation process.

Averaging data over large-scale spatial structure can lead to further underesti-

mation of Ro. Phocine distemper epizootic sets up a sequence of local outbreaks

that, once initiated, proceed independently. The spatial unit at which an outbreak

occurs is a single haul-out location. Treating several haul-out units as one, or pool-

ing data from several haul-out units into one, will result in a smaller estimate of Ro

than for a single haul-out. Looking at the outbreak at a larger spatial scale than it

occurs, artificially prolongs the duration of the epizootic thereby reducing Ro (see

Figure 2-15).

One potential way to improve the method and reduce the bias would be to use EM

algorithm to find the maximum-likelihood estimates. The EM algorithm, first named

by Dempster et al. (1977) is a computation that iterates between an "Expectation-

step" and a "Maximization-step." It is a broadly applicable algorithm for estimating

parameters from incomplete data sets by maximum likelihood methods. In epidemi-

ology, the EM algorithm is not only used for the estimation of parameters, but also

for reconstruction of the entire time series of unobservable classes. For example, the

most reliable data on HIV/AIDS epidemic are often incidences of cases diagnosed

with AIDS. It is much harder to observe the times of infection with HIV. Becker

(1997) used the EM algorithm to back-project HIV infection curve from the AIDS

incidence data. Andersson & Britton (2000) show how the algorithm can be used



to estimate the probability of infection in chain-binomial models. In the case of the

distemper outbreak in seals, the only time-series data at hand is actually the series

of estimates of the number of seals that have died each day, so EM approach is not

applicable.

Estimates of Ro values for phocine distemper outbreaks fall in the range 1.4-

3.15 for the 1988 outbreak, and 0.9--3.76 for the 2002 outbreak, over all final sizes.

Since the method described in Section 2.3 is negatively biased, the true value of Ro

for phocine distemper outbreaks is likely to be higher. Estimates for 1988 outbreak

reported in this chapter agree with Ro for the 1988 epizootic from the literature - Ro

was estimated to be 2.8 by Swinton et al. (1998) and between 2.1 and 3 by de Koeijer

et al. (1998). There are no published estimates of Ro for the 2002 outbreak.

Phocine distemper virus has a small Ro compared to some of its relatives be-

longing to the genus Morbilliviridae. Measles, one of the most infectious childhood

diseases and the most famous member of the Morbillivirus group, has Ro that ranges

between 10 and 20, depending on location (Anderson, 1996; Keeling & Grenfell, 2000;

Bjornstad et al., 2002). Highly transmissible infections include some other childhood

diseases like chickenpox (7 < Ro < 12), mumps (11 • Ro < 14), and also sexually

transmitted diseases such as HIV/AIDS epidemic with Ro around 10 in sub-Saharan

Africa (Anderson, 1996). However, even diseases with small Ro and transmissibility

compared to measles can cause pandemics and outbreaks of severe morbidity and

mortality; estimates of Ro for 1918 pandemic influenza lie between 2 and 3 (Mills

et al., 2004), whereas seasonal influenza epidemics have Ro around 1.35 (Viboud

et al., 2006), and SARS outbreak of 2002 had Ro value around 3 (Lipsitch et al.,
2003). In naive populations, diseases with relatively low transmissibility and Ro can

cause severe morbidity and mortality, which appears also to have been the case with

phocine distemper outbreaks in harbor seal populations.

Values of Ro estimated for PDV can also give us insight on the transmission

process going on between seals. If transmission is density-dependent, as has been

assumed in the model (2.24), Ro should increase with initial population size, So, all

else being equal. In the case with phocine distemper, there is no clear relationships

between So and Ro (Figure 2-14). Since Figure 2-14 compares different locations,
the 'all else being equal' assumption does not hold, so it's hard to determine how
much other habitat differences contribute to relationship of So and Ro. Nevertheless,
estimates of Ro are not very different (they are all the same order of magnitude)



even though populations sizes varied between 400 and 20,000. On the other hand,

for frequency-dependent transmission Ro in equation (2.6) is constant irrespective of

So. This suggests that in reality the mixing of seals is somewhere in the continuum

between those to extremes.

Processes that affect the mixing of seals are likely to affect the value of Ro as well.

Figure 2-17 suggest that R 0 is smaller for the locations where the disease appeared

late in the year, especially in the 1988 outbreak. Seasonal processes that result in

lower mixing rates late in the year can help explain this pattern. One of those seasonal

processes is the haul-out behavior of seals. Seals give birth, rear their offspring and

molt on land, leading to their haul-out behavior to peak in the summer, when up

to 57% of the colony can be found on land (Heide-Jergensen & Hirk6nen, 1992).

Since PDV is an airborne virus, it is believed its spreads by inhalation while seals

are hauled-out on land. Seasonal haul-out behavior can influence the mixing and the

contact processes in seals leading to reduced transmission of infection in the fall and

winter, and to small Ro values.

The haul-out behavior differs from region to region, and in Kattegat and Skagerrak

it depends on the sea-bottom substrate of the locations. This also influences the

dynamics of the outbreak, so in the rocky regions Ro decreases with the peak mortality

date, whereas in the sandy regions this is not so. In the rocky regions, food is abundant

and seals don't have to travel far in search for food, so they spend more time on land.

In the sandy regions, the food is scarce so seals spend less time on land, and more

time in search for food. Throughout the year the fraction of the population hauled-

out on land is lower in the sandy regions than in the rocky regions, so it will be more

influenced by the stochasticities of the epidemic processes leading to more variable

Ro estimates. The effects of the seasonal haul-out behavior and the timing of the

outbreak on the dynamics of the phocine distemper epizootics are studied in further

detail in Chapter 3.
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Chapter 3

Seasonal haul-out behavior and the

dynamics of the phocine distemper

virus

3.1 Introduction

Phocine distemper virus was first described in 1988 after it killed over 23,000 harbor

seals (Phoca vitulina) in Northern Europe (Osterhaus, 1988; Osterhaus & Vedder,
1988; Osterhaus et al., 1989a; Dietz et al., 1989; Heide-Jorgensen et al., 1992). The

disease appeared at the Danish island of Anholt in April, and in the following months

spread throughout Europe, reaching Scotland in the fall. Over the next 14 years the

harbor seals populations recovered to double the 1988 pre-epizootic population size

on the Continent, and reaching levels comparable to 1988 in the UK.

An interesting feature of PDV outbreaks is that the proportion of seals that died

during the outbreak varied among regions (Figure 3-1). The Danish, Swedish and

Norwegian populations experienced much higher mortalities (50 - 60%) than the

populations in England, Scotland and Ireland (10-20%) (Dietz et al., 1989; de Koeijer

et al., 1998; Harding et al., 2002; Hirkonen et al., 2006). The mortality was lowest in

the regions where PDV appeared last. Estimates of Ro also differ significantly among
locations (Chapter 2). Ro was estimated to be lower in locations where the disease
appeared late in the year, suggesting a seasonal mechanism might be influencing the
transmission of the virus. One potential mechanism is the roughly annual cycle in
the haul-out behavior of harbor seals.
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Figure 3-1: Map of mortalities of 1988 and 2002 PDV outbreaks.

Seals give birth, rear their offspring and molt on land. As a result, the fraction

of a population "hauled-out" on land at any time peaks during the pupping and

molting seasons in late spring and summer. At that time, approximately 60% of a

colony are on land (Thompson et al., 1997; Ries et al., 1998; Hark6nen et al., 1999).

The percentage of animals on land also varies with age and sex (Thompson, 1989;

Hidrk6nen et al., 1999, 2002).

In addition to demography, the haul-out pattern is influenced by the sea-bottom

topography. In the regions of the Kattegat and Skagerrak Seas with rocky sea-bottom

substrate, food is abundant and seals do not have to travel far in search for food, so

they spend more time on land. Where the substrate is sandy, food is scarce so seals

spend less time on land, and more time in search for food. As a result, throughout the

year the fraction of the population hauled-out on land is lower in the sandy regions

than in the rocky regions (Figure 3-2).

Phocine distemper virus is an airborne virus, that spreads by inhalation (Kennedy,

1990, 1998) and can only be transmitted between seals that are hauled-out on land.

Haul-out behavior determines the contact process between the seals, so it will influ-

ence the transmission of the virus and make it seasonal whenever haul-out behavior

is seasonal. In this chapter, I account for the haul-out behavior by including it in

the model of transmission. The result is a non-autonomous model for the epidemic.

I modify the pseudo-maximum-likelihood estimation procedure from Chapter 2 to

estimate the probability of infection, and derive an expression for R7o.
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Figure 3-2: Haul-out patterns in Kattegat (left) and Skagerrak Seas (right) depend
on sea, bottom topography.

When the model includes the haul-out behavior, the importance of the timing of

the virus introduction becomes apparent. I use simulations to illustrate how seasonal

behavior and the timing of the beginning of infection influence the dynamics of the

outbreak. My results show that the mortality and the final size of the outbreak will

be low if the virus is introduced to the population in the winter, when the population

numbers on land are lowest.

3.2 Model

The duration of phocine distemper outbreaks is short compared to the lifespan of

harbor seals, so I assume that the seal population did not grow significantly during

any of the two epizootics and model PDV outbreaks in any haul-out location as

a closed epidemic. The seal population on day t consists of susceptible seals (St),
infectious seals (It), and a removed class (Rt), which accounts for both immune and

dead seals. The incidence, or the number of seals that are infected on day t, is given

by the random variable Xt. The random variables are denoted by upper-case letters

here, and their realizations by lower case. After getting infected, a seal goes through

a latent period of 3 days, after which it becomes and remains infectious for 12 days,
when it finally becomes immune or dies. In Chapter 2, I modeled the dynamics of

sandy substrate rocky substrate

v



this epidemic process as

St+ = t - Xt, (3.1a)

It+1 = it + Xt-3 - Xt-15, (3.1b)

Rt+ = rt + Xt-15, (3.1c)

Xt - Bin[st, 1 - (1 - p)'], (3.1d)

where xt is zero for t negative (Heide-Jergensen & Hdirk6nen, 1992).

System (3.1) does not account for haul-out behavior, so a contact between any pair

of infectious and susceptible seals can result in a new infection, with the probability

p. The probability that a susceptible does not get infected after contacting a given

infective is 1 - p, and (1 - p)i" is the probability of avoiding getting infected by any

of the it infectives at time t. The total probability that a susceptible gets infected on

day t is then 1 - (1 - p)i.

Since PDV is an airborne virus, I assume that it can only be transmitted between

seals that are hauled-out. On any given day t, every seal has the same probability

ht of being hauled-out. Let St and It be binomially distributed random variables

that describe the number of susceptible and infectious seals hauled-out on day t,

respectively.

S t  ~ Bin[st, ht], (3.2a)

Lt Bin[it, ht] (3.2b)

The probability that an infective seal on land meets and infects a susceptible seal

on land during one day is p. The incidence, Xt, is now a function of hauled-out

susceptibles and hauled-out infectious seals

Xt - Bin[st, 1 - (1 - p)_t]. (3.3)

After the infectious period, seals either recover or die. If the the probability of death

is m, the number of seals that die on day t (Yt) is binomially distributed

Yt ) Bin[xt_15, m]. (3.4)

System (3.1)-(3.3) is non-autonomous; the probability of being hauled-out on land is



a function of time.

3.2.1 Ro for constant haul-out

Seasonal behavior of seals affects the dynamics of the model. We are particularly

interested in how the haul-out changes the threshold behavior of the model and its

Ro. In nature, the seasonal behavior of seals varies in time, but for mathematical

simplicity I will first derive an expression for Ro for the case where haul-out is constant

in time.

When the fraction of seals on land is constant in time, ht = h, seals have a fixed

probability of being hauled out on land throughout the year. For a given p, the

number of seals that become infected during the outbreak depends on the value of

h - the smaller value of h, the smaller the size of the outbreak (Figure 3-3). When

h = 1, the model reduces to the model without haul-out behavior from Chapter 2,
given in equations (2.24) and (2.25).

The basic reproductive number Ro now depends on the haul-out behavior in

addition to transmission probability. One infectious individual in a population of so

susceptibles, will on average cause (phso)h new infections during one day, as it has

the probability of being on land equal to h, and once it is on land it will come into

contact with hso susceptibles. An individual remains infectious for 12 days, so the

expected number of new infections it will produce during its infectious lifetime is

equal to

Ro = 12h 2pso. (3.5)

For Ro < 1 only small outbreaks outbreaks occur, and the distribution of final

sizes is unimodal. When Ro > 1 both minor and major outbreaks are possible, and

the final sizes have a bimodal distribution (Figures 3-3 and 3-4).

3.2.2 Ro for time-varying haul-out behavior

When haul-out behavior is constant (or absent), the probability of an outbreak is

the same regardless of what day the virus is introduced to the population. Equal

percentage of the population is on land every day, so for every day of the virus in-

troduction, the expected number of new infections is the same. 7R does not change

with the timing of the virus introduction. When different percentages of the popula-

tion are hauled-out at different times of the year, the expected number of seals that



5000*

100 200
day since introduction

3300

100 200 300
day since introduction

0 0.5 1
final size

1 An

500

100n

0
0 0.5 1

final size

K
500

0
0 100 200 300

day since introduction

1000
500

0 -.-
0 100 200 300

day since introduction

0
0o

0.5
final size

0.5
final size

1

I u .· 2 '"
Soo 500

0,

U U

0 
100 

200 
300 0.5

h = 0.7
(R = 2.94)

h=1
(Ro=6)

day since introduction final size

Figure 3-3: The final size of an outbreak depends on the fraction of seals hauled
out on land, h. Parameter values: so = 1000,p = 0.0005, m = 0.6. The l0o values
corresponding to these parameter values are indicated on the graph.

500 [
0
0

1000

500

0
0

h = 0.1
(Ro= 0.06)

h = 0.4
(Ro= 0.96)

h = 0.5
(Ro= 1.5)

*

1111 l1

D
~nnrr

rrrr

IIIIII

IIIIIi

'

I500n

500

II r--n_
0 0~fi llII I .

500
0- 0

^^^UU"l I UV"
u ' `" ... .

v Ivy rvv ~vv



0.

0.

0.

0 0.
.N
U) 0.0.

0.

0.

0.

fraction hauled out, h

Figure 3-4: The distribution of final sizes as the function of the haul-out fraction.
For each of the values of h, this graph shows final sizes of 1000 epidemic trajectories
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the value of haul-out fraction for which Ro = 1. When Ro > 1 major outbreaks are
possible, and the distribution of final sizes is bimodal.

become infected depends on the day the virus is introduced to the population. When

the number of seals on land is low, the potential for a successful contact is small and

there is no outbreak. As the number of seals on land increases, so does the probability

and final size of outbreak.

Figure 3-5 shows 1,000 epidemic trajectories for three different days of the in-

troduction of infection. In Fig 3-5A, one infectious individual is introduced to an

otherwise susceptible population on Julian day 110, when only about 10% of the pop-

ulation is hauled-out on land. In this case, a major outbreak occurs in only 4 of the

1,000 trajectories. If we introduce one infectious seal to the population on Julian day

160, almost every simulation results in an outbreak, but the total number of seals

infected during the outbreak (i. e., the final size) varies. If the disease appears later

in the year, Julian day 200, when the numbers on land are declining, the final size of

the outbreak decreases, as does the final mortality.

Figure 3-5 shows only 3 of the possible 365 days on which the infection may begin.

To illustrate how the mortality and the final size of the epidemic would change with
different starting days of the infection, I introduce one infectious seals to an otherwise

susceptible population on each day of the year. For ht, I use two different types of
haul-out curves shown in Figure 3-2, for sandy and rocky sea-floor topography. For

1
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that was used in simulations. The vertical lines in the top graphs indicate the day
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each day of the virus introduction, I simulate 10,000 epidemic trajectories 300 days

long. The last point of each trajectory provides the final mortality. For each starting

day of the outbreak, I get 10,000 values of the final mortality. I summarize those

values of final mortality for different values of p in Figures 3-6 and 3-7 with the mean

value (solid line), and the envelope defined by the 5th and 95th percentile.

In the winter (the beginning and the end of the year; approximate Julian days

0-100, 350-365), there is virtually no possibility of an outbreak as only a small number

of seals are hauled-out on land. In the spring, the number of seals on land increases,
and we can observe outbreaks of various final sizes. In the summer, the majority of the

population is hauled out, the final size is determined by the law of large numbers and

we can observe major outbreaks. The mean final size of outbreaks gradually decreases

in the fall. In short, for sandy haul-out pattern, and parameters used in simulations,
there can be no outbreaks in the winter, whereas at other times of the year there can

be outbreaks of various final sizes. In the rocky regions, seals are hauled-out in large

numbers throughout the year, so the possibility of a large outbreak exists year-round.

Qualitatively similar dynamics are observed for different probability of transmis-

sion p -.- the final size of infection is smaller in the winter than in the summer, and

for the same initial infection date the size of the outbreak is larger in the rocky than

in sandy regions. For smaller value of p (Figure 3-7) the final size of the outbreaks in

the rocky regions drops in the winter, and the envelope defined by the 5th and 95th

percentile becomes wider.

It is intuitive that when haul-out behavior varies with season, the expression for

l0 must incorporate the timing of the outbreak. Let to be the day when the first

infectious seal is introduced to an otherwise susceptible population of size so. The

probability that this infectious seals is on land on day to is equal to hto, and the

average number of new infections during day to is p so (hto) 2 . The probability that

this infective is on land on its second day of infection is hto+l. The average number of
new infections on the second day of the infection is p so (hto+ 1)2. Taking the sum of all
the new infections caused by one infectious individual throughout its entire infectious
period that lasts 12 days, gives

to+11

Ro (to) = P so h (3.6)
t=to

that is different for different days of the year.
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Ph = 0.001, im = 0.6. Figure also shows the mortality (solid line) for sandy regions
from Figure 3-7 and the threshold level Ro - 1 (horizontal line) for reference.

Figure 3-8 shows Ro against to corresponding to the parameters of the sandy

areas shown in Figure 3-7. We would expect that the region of elevated mortality

corresponds with the region of graph where Ro(to) > 1. However, it turns out that

Ro predicts the final mortality poorly in this case, and increase in mortality occurs

occurs before Ro reaches the levels beyond the threshold.

The graph 3-8 show the mortality at the end of a 300-day long outbreak. For

example, take day 110 as the day the virus is introduced to the population. On day

110, I introduce one infected individual to an otherwise susceptible population and,

for a given set of parameters, I simulate 10,000 epidemics each lasting 300 days. The

mortality observed at the end of those 300 days is plotted in the graph with 110 on

the x-axis.

The value of Ro(to) is calculated based on the haul-out levels during the infectious

period; Ro(110) only accounts the haul-out levels during days 110-121. In the Fig-

ure 3-5, we can see that if the virus is introduced on day 110, some of the trajectories

will result in an outbreak. However, the number of dead in these trajectories does

not begin to increase until 100 days after the beginning of the outbreak (whereas the

number of dead increases much sooner for days of introduction 160 and 200). This



late increase in number dead reflects the elevated fraction of the population hauled-

out well after the introduction day. If the number of seals on land is low, the infection

can linger in the population at a low level, and turn into an outbreak well after the

initial infection day. Since the value of Ro(to) only incorporates the changes in ht for

the duration of one infectious period (12 days), it does not reflect the 'delay' in the

increase in mortality.

3.3 Estimation of 7Ro from data

When the initial population size (so) the haul-out behavior and the date of the first

infection are known, estimating Ro reduces to estimating the probability of infection

p. The use of maximum likelihood methods for estimating p would require knowledge

of the number of seals in each class for every day of the epizootic. Let to be defined

as above (day of virus introduction), and let t indicate the duration of the outbreak

in days. The likelihood of an epidemic trajectory is

to+t

L(p) =- f (x k ls- , 1 - (1 - p)k), (3.7)
k=to

where f is the binomial probability density function,

f (x I , p) = (s)p(1 - p)x (3.8)

Had we observed the number of seals in each epidemic compartment throughout the

outbreak, and the number of infectious and susceptible seals on land throughout the

outbreak, we could calculate L(p) and estimate the value of p, as the value tP that

maximizes this likelihood.

The only observation of the epidemic data in case of PDV is the information on

the stranded carcasses. The number of seals that gets stranded and reported will

depend on many factors such as the weather conditions and reporting effort, so it

will include an observation error. The cumulative number of stranded seals provides

the total number of seals that have died of distemper in a particular location. A

more reliable way to obtain the total mortality is from the difference in census data

before and after the outbreak. As in Chapter 2, I let the observation error be equal
to the ratio of the total number recovered stranded seals to the difference in census



data. I assume the observation error is constant throughout the outbreak and scale

the epidemic curve to match the total number of seals that died according to the

population counts. The scaled daily counts of dead seals are then used to construct

the estimates of st, it and it.

To reconstruct the series of incidence, I equated the observed mortality with its

expectation under (2.26) and find

t- Yt+15 (39)
at = (3.9)

The incidence is integer-valued. Rounding i to the nearest integer introduces the

possibility that the number of the total individuals infected is larger than the initial

susceptible population size. Therefore, to keep i series in integer form, I round the

right-hand side of the equation (2.30) to the nearest integer towards minus infinity

using the MATLAB command floor ().

After obtaining it, I use assumptions of the model (3.1) to reconstruct the series

for susceptible seals

9t+1 = t - iit; 81 = N. (3.10)

and the series of infectious seals via

Yt+12 - Yt
't = :t+1 - - ; = 0. (3.11)

If the haul-out pattern ht is known, we can use it together with & and i to estimate

_ and j by taking the expected value of (3.2),

-, = floor(hit ý), (3.12a)

t = floor(ht it) (3.12b)

We then treat estimates s, 1, i as though they were actual observations and esti-

mated P3 by maximizing the log-likelihood of the estimates

T

e(p) = Iln [f (,k1 -(- p)(k)1 . (3.13)
k=O

over p.



3.3.1 Accuracy and the precision of estimation

Figures 3-9--3-11 summarize the accuracy, precision, and the bias of the Ro estimates,

for constant haul-out behavior and two different patterns of seasonal haul-out. In

these figures, each box plot represents a summary of Ro estimates from 1,000 simu-

lated epidemic trajectories with known parameters. The value of Ro used in simulated

trajectories is indicated by a horizontal black line. When Ro > 1, the distribution of

final sizes is bimodal, consisting of non-outbreaks and outbreaks. To unambiguously

distinguish between an outbreak and a non-outbreak, I set a threshold of what con-

stitutes an outbreak to be 20% of the expected deterministic final size 1 - exp(-Ro),
and discard any trajectories that did not reach this threshold.

As observed in the previous Chapter, the method is negatively biased. When

haul-out behavior is present this bias is stronger, especially for small population size

(100 individuals) and for small haul-out levels. For constant haul-out, estimates are

more accurate, precise, and less biased for larger population sizes. When the haul-

out behavior varies in time, the negative bias remains strong for the population sizes

observed in the data set.

The main source of error is again a numerical one. In Chapter 2 main source of

bias was in the round-off error in the reconstruction of the incidence data. In addition

to underestimating incidence by rounding off the equation (3.9) to the nearest integer

towards zero, there are two other round-off steps in equations (3.12) that further

underestimate the transmission.

3.4 Application to phocine distemper data

After developing the model with the haul-out behavior, studying its dynamics, and

deriving a method to estimate its epidemiological parameters, I want to apply this

methodology to the available phocine distemper virus data. Here I focus on those seal

populations for which both the haul-out data and the epidemic curves are available

for both 1988 and 2002 outbreaks: Anholt, German Wadden Sea (WSNS), Dutch

Wadden Sea (WSNL), and Moray Firth. The population sizes before the outbreaks

for these locations, the total number of seals that have died, and initial infection dates

are listed in Table 3.1.

The information on the probability of being on land, ht, is obtained from the

studies of the haul-out behavior of seals.
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Table 3.1: Sizes of harbor seal populations before 1988 and 2002 PDV outbreaks for
the regions whose epidemic and haul-out curves were used in estimating ZRo. D(oo)
is the total number of seals that have died in each location, and to designates the
Julian day of 15 days before the day when the first dead seal was recovered in each
location. Data provided by Karin Harding and Tero Hirk6nen.

Anholt
WSNS
WSNL

Moray Firth

1988
N D(oo) to

863 477 88
4602 2633 147
1800 914 149
1598 93 178

2002
N D(oo) to

1467 200 109
10042 4689 183
7002 3251 152
1198 86 238

3.4.1 Haul-out behavior

Harbor seals have been studied at their haul-out sites for decades. During 1979-

1986 aerial surveys were conducted simultaneously for Swedish and Danish haul-out

locations, which were photographed in the peak haul-out season. Seals were later

counted from the photographs (Heide-Jergensen et al., 1992; Hirkinen et al., 1999,
2002). The observations were reintroduced after the 1988 PDV outbreak.

Systematic observations and counts of seals have been carried out on Anholt since

1978 (Heide-Jergensen & Hdrk6nen, 1988). Sand dunes at the beaches where the

seals haul out were used as platforms for observations. Seals were counted twice on

every occasion, and the average number was reported. When several observations

were reported for the same day, I consider only the maximum value for that day.

Each year, the number of seals hauled-out peaks; Figure 3-12 shows the hauled-out

data as a proportion of that maximum.

From telemetry studies of seals equipped with VHF transmitters, we can infer

that the proportion of the total population hauled-out at maximum is between 65-

71% excluding pups (Thompson et al., 1997; Ries et al., 1998; Hirk6nen et al., 1999)

or between 57-59% including pups and assuming that pups of the year haul out 10%

of their time during surveys (Karin Harding, personal communication).

The four locations I am considering here, differ in the number of observations of

haul-out behavior. For Anholt, there are 12 years worth of observations, for Dutch
Wadden Sea there is only one year, whereas for Scotland and German Wadden Sea

the data is in the form of monthly averages. In order to have the data for all locations

in the same form, I calculate the monthly averages for Anholt and Dutch Wadden
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Sea. In order to estimate the transmission probability for the model with haul-out

behavior, we need to know ht for every day of the year (t = 1,..., 365). Therefore, I

use linear interpolation to missing data points, and scale them so that the obtained

haul-out curves in Figure 3-14 peak according to the telemetry levels.

3.4.2 Ro estimates for 1988 and 2002 PDV outbreaks

Using epidemic curves from Hdirk6nen et al. (2006), population levels and to values

listed in Table 3.1, and the haul-out curves in Figure 3-14, I estimated Ro values

for 1988 and 2002 PDV outbreaks for Anholt, German (Nieder-Sachsen region) and

Dutch Wadden Sea, and Moray Firth. The probability of death m was calculated

assuming that all seals become infected over the course of the outbreak (final size =

1). Table 3.2 summarizes Ro estimates with and without accounting for the haul-out

behavior.

I evaluated the accuracy, precision and bias of each Ro estimate by simulating

1,000 epidemic trajectories using the values of parameters estimated for each location.

Since the resulting trajectories consist of both non-outbreaks and outbreaks, I discard
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Table 3.2: Comparison of the Ro estimates with and without accounting for haul-out
behavior.

Anholt
WSNS
WSNL

Moray Firth

1988 2002
m no haul-out haul-out

0.55 2.92 1.05
0.57 2.51 1.17
0.52 2.33 1.94
0.06 2.19 2.91

m no haul-out haul-out
0.14 2.22 1.06
0.47 2.71 5.36
0.41 2.5 1.77
0.07 1.62 2.66

any trajectories that did not reach the 20% of the expected deterministic final size

1 - exp(-Ro). Estimates of Ro from the remaining simulated trajectories are shown

with box plots in Figure 3-15 for both outbreaks.

The simulations suggest that bias is negative in Anholt and in Moray Firth for

both 1988 and 2002. Further, the simulations suggest that Ro estimates are both more

accurate and more precise for the Wadden Sea populations. This may be because the

population size in the Wadden Sea is larger than in Anholt or Moray Firth, especially

in 2002 when the German Wadden Sea population alone numbers over 10,000. Figures

3-9--3-11 all indicate the estimates are more accurate and more precise for large So.

The fractions of the population that died in the epidemic (I refer to this fraction

as the final morality) vary among locations in both PDV outbreaks. Since each year

PDV appeared only once in each location, we do not know whether the mortality

within the location would also vary, had there been multiple outbreaks throughout

the same year. To study how mortality would vary within a location for different days

of virus introduction, I simulated multiple epidemic trajectories using the parameters

for Anholt, WSNS, WSNL and Moray Firth corresponding to 1988 (Figure 3-16)

and 2002 outbreak (Figure 3-17). For both outbreaks, the observations of mortality

provide the probability of death m, so the data falls on the upper bound of the

simulated trajectories.

In all locations, except for Moray Firth, in both the 1988 and the 2002 PDV-

outbreak scenario the final mortality is zero at the beginning of the year, starts to

increase between days 50 and 100, peaks around day 200, and drops back to zero at

the end of the year. The peak in mortality occurs before the peak in the haul-out

behavior. The mortality in the Moray Firth, although small, is constant throughout

the year. The final sizes of the simulated outbreaks start also at zero at the beginning

of the year, begin to increase after day 50, peak before 200, and then drop down to
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zero. But, in the Moray Firth, almost all values of final sizes are possible throughout

the year, which is why mortality is positive throughout the year in that location.

Since the haul-out levels are well beyond zero throughout the year in the Moray

Firth, there is enough interaction between the seals to promote the transmission of

the virus year round. The level of mortality in Moray Firth is low because of the low

probability of death, m, estimated for that location. It is only 6% whereas m is over

50% in other three locations for the 1988 outbreak.

In addition to variation in the final mortality throughout the year, Figures 3-

16 and 3-17 point out there can be significant variation in mortality even for the

same day of virus introduction. During the first half of the year, when the fraction

of the population that is hauled-out increases, the envelope determined by the 5th

and 95th percentiles is very wide and includes outbreaks of all possible final sizes.

When the numbers on land are decreasing, this envelope is narrow and final sizes are

distributed around some deterministic value. Even though the haul-out curve has

a roughly symmetric shape, the envelopes are not symmetric. This is because the

total number of infections does not depend only on the fraction of seals hauled-out

on the initial infection day, but also on the fraction of seals hauled-out throughout

the outbreak.

3.5 Discussion

The combination of the seasonal behavior of seals and the timing of the virus in-

troduction alone can explain the large differences in mortality among regions. If the

virus is introduced to the population in the winter when the population levels on land

are low, there will be a small outbreak and the population will suffer low mortality.

A large outbreak is most probable in the summer, before the number of the seals on

land peaks.

The importance if the timing of the virus introduction and its influence on the

mortality cannot be detected unless the seasonal behavior is present in the model. The

importance of seasonality has been well documented for other diseases. For childhood

diseases like measles and chicken pox, seasonality comes from the aggregation and

dispersal of schoolchildren during and after the school year (e. g., Anderson, 1996;

Bjornstad et al., 2002). For vector-borne diseases such as malaria, the seasonality

comes from the fluctuations in the mosquito, i. e., vector, abundance (Anderson,
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1996). In all of these examples, the seasonality influences the transmission of the

disease and ignoring it can lead to wrong conclusions about the dynamics of the

epidemic in the population.

Haul-out behavior and the timing of the virus introduction not only explain the

variation in mortalities among regions, but can also explain the differences in the

mortality between two outbreaks at the same location. Seasonality is not the only

explanation for the difference in mortality among locations. Two other interpretations

are: (i) Differences in mortalities are linked to pollution, because mortality rates are

higher in regions with higher concentration of PCBs, pollutants known to suppress

the immune system of many animals (Bergman et al., 1992; Mortensen et al., 1992;

De Swart, 1995; de Koeijer et al., 1998). (ii) Harbor seal populations are genetically

differentiated, and different gene frequencies could lead to different susceptibility of

different sub-populations and influence the mortality of local populations (Stanley

et al., 1996; Goodman, 1998).

Even though the combination of the seasonality of transmission and the timing

of the virus introduction clearly play a substantial role in determining the final size

and the final mortality of an outbreak, other factors cannot be entirely ruled out.

Differences in pollution levels exist, and many pollutants have proven immunotoxic

effects. Immunosuppressants, such as PCBs, and different inherent susceptibility to

disease can elevate, or, in the case of decreased susceptibility, lower the levels of

mortality predicted by the model. However, I think mortality levels "correcting"

for immunosuppression and genetic differentiation would fall within or close to the

bounds described by the model with seasonal behavior alone.

Contamination with organochlorines may, however, play an important role in de-

termining the time a certain population takes to recover from such a serious mortality

event, since organochlorine pollution can lower the reproductive success of seals (Rei-

jnders, 1986, 2003). Growth rate of harbor seals is already constrained by a single

birth per female per year (Hark6nen & Heide-Jorgensen, 1990), so any further de-

crease in growth rate due to lowered reproduction success can lead to much slower

recovery of the population which can be hazardous in the case of recurrent virus

outbreaks.
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Abstract

The dynamics of HIV/AIDS epidemics in a certain region is determined not only
by virology and virus transmission mechanisms, but also by region's socioeconomic
aspects. In this paper we study the HIV transmission dynamics for Cuba. We mod-
ify the model of Arazoza & Lounes (2002) according to the background about the
virology, as well as the socioeconomic factors that impact the epidemiology of the
Cuban HIV outbreak. The two main methods for detection of HIV/AIDS cases in
Cuba are 'random' testing and contact tracing. As the detection equipment is costly
and depends on biotechnological advances, the testing rate can be changed by many
external factors. Therefore, our model includes time-dependent testing rates. By
comparing our model to the 1986-2000 Cuban HIV/AIDS data and de Arazoza and
Lounes model, we show that socioeconomic aspects are an important factor in deter-
mining the dynamics of the epidemic.

4.1 Introduction

Human Immunodeficiency Virus (HIV) is a global problem with an estimated 40 mil-

lion infected worldwide (UNAIDS, 2004). Population infectivity estimates range as

high as 8.5% for Sub-Saharan Africa, and as low as less than 0.1% for East Asia

and Australia/New Zealand. Cuba, in this respect, is remarkable as its infectiv-

ity is estimated as less than 0.1% despite its status as a relatively resource-poor

nation (Kirkpatrick, 1997; AAW, 2005). The understanding of Cuban HIV/AIDS

infectivity dynamics may assist the design of preventive and reactive measures to

HIV in countries with high HIV prevalence. This hypothesis is supported by Cuba's

well-developed health care system despite its resource limitations (Kirkpatrick, 1997;

AAW, 2005).

The purpose of this paper is to develop a new model that explains the dynamics

of HIV/AIDS epidemic in Cuba, focusing on the period of 1986-2000. We built our

model upon the work of Arazoza & Lounes (2002) and we confront both models with

the available data (Arazoza & Lounes, 2002). We begin with a review of the virology

of HIV/AIDS within the socioeconomic framework of Cuba 1986-2000 in Section 4.2.

The formulation and brief analysis of the mathematical model follows in Section 4.3,

as well as the comparison of the model with data. We finish with a discussion in

Section 4.4.
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Table 4.1: New cases
& Lounes, 2002).

of HIV, AIDS, AIDS-related deaths in Cuba 1986-2000 (Arazoza

AIDS-cases
5
11
14
13
28
37
71
82
102
116
99
129
150
176
251

Death due to AIDS
2
4
6
5
23
17
32
59
62
80
92
99
98

122
142

4.2 Background

With a total population of 11 million, and less than 1000 infected, Cuba's HIV/AIDS

epidemic is a small one. As part of the HIV/AIDS prevention program, Cuba has

an active search of seropositives through the sexual contacts of known HIV-infected

persons; this system is called contact tracing. Infected persons are also found through

a 'blind' search of blood donors, pregnant women, persons with other sexually trans-

mitted diseases, etc. (Arazoza & Lounes, 2002). Both methods are very successful

in locating HIV-positive persons (Arazoza & Lounes, 2002). The numbers of newly

diagnosed HIV cases, AIDS cases, and AIDS-related deaths per year in Cuba are de-

tailed in Table 4.2 and plotted in Fig. 4-1 below Arazoza & Lounes (2002). However,
fluctuations in these numbers are due to both the character of the HIV virus and the

manner in which the Cuban population has been monitored for its presence. A model

which does not distinguish between virology, the socioeconomic framework which this

virology exists (i.e., the epidemiology), and how this framework has been observed,
may generalize very poorly.
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Year
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

HIV-cases
99
75
93
121
140
183
175
102
122
124
234
363
362
493
545
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Figure 4-1: New cases of
zoza & Lounes, 2002).
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4.2.1 Virology

An average HIV-infected individual progresses through distinct stages of the disease.

The infectiousness (i. e., the probability of transmission) varies greatly depending

upon the stage of the disease. First comes a period of primary infection (lasting part

of a year Ahlgren et al., 1990). During the primary stage, infectiousness first rises

and then drops. Seroconversion usually occurs before the end of the first year. HIV is

an asymptomatic period (Ahlgren et al., 1990, averaging 7 years without treatment)

in which infectiousness is low. This is followed by a symptomatic stage (averaging

three years until death without treatment Ahlgren et al., 1990) where infectiousness

rises again. Although toward the end of the symptomatic stage individuals are expe-

riencing severe AIDS and activity is decreased, the symptomatic stage begins while

individuals are relatively healthy and still very active. The average stage infectivity

rates for semen has a of a small peak shortly after initial infection followed by a larger

peak during the symptomatic phase (Rapatski et al., 2005). This correlates with the

changes in viral load observed as a person progresses through the disease (Pantaleo

et al., 1993; Clark et al., 1991; Darr et al., 1991; Anderson, 1996). This pattern is due

to the physiology of the disease, the way the infected persons' bodies interact with the

virus (Gray et al., 2001; Saracco et al., 1993; Piatak et al., 1993; Vincenzi, 1994), and

is largely independent of the sexual practices. In Cuba, most of the transmissions

occur through sexual intercourse (about a 1:1 ratio of heterosexual to homosexual

transmission, Holtz, n.d.; Hsieh et al., 2001).

4.2.2 HIV in Cuba

Cuba treated the introduction of HIV into the country in 1986 as a public health

emergency, introducing control measures to contain the spread of the disease. As a

result, Cuba has one of the lowest prevalence rates of HIV infection in the world.

Cuba's HIV prevalence of 0.03% is nearly 11 times lower than that of the United

States (Perez-Stable, 1991; Burr, 1997). In 1986, Cuba introduced a national screen-

ing program. Cuba had a well-developed health care system that assigned a primary

care physician to all citizens and conducted routine surveillance for infectious disease

(Waitzkin et al., 1997; Feinsilver, 1989). To reduce the risk of transmission Cuba

instituted numerous measures, including contact tracing, isolation (quarantine) of

HIV-infected individuals and a total ban on the import of blood and blood byprod-
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ucts (Holtz, n.d.; Hsieh et al., 2004). Initially, quarantine individuals lived in isolation

in sanitariums. By 1993, patients could choose between living within a sanitarium

or living at home. In the sanitariums, people are provided with good meals, a par-

tial salary, free medications and care from physicians (Santana et al., 1991). Most

individuals could not provide the care necessary for them and therefore most choose

to live in the sanitariums (Holtz, n.d.). Once a person is quarantined, they are no

longer a factor in the transmission of the disease. Contact tracing in Cuba involves

the search of HIV-positive persons through the sexual contacts of known HIV-infected

individuals. This practice has proven to be quite effective in Cuba (Hsieh et al., 2004).

Since a significant fraction of those found to be HIV positive occur through contact

tracing, a model of HIV in Cuba must allow for contact tracing.

HIV Data

To model the Cuban HIV epidemic, one has to acknowledge contact tracing and

quarantines as well as any inconsistencies with the available data (Table 4.2, Figure 4-

1). The first column in Table 4.2 represents those individuals that tested positive for

HIV during that year; they may have acquired the disease some time before. The

number of total HIV cases in column one includes both newly tested HIV-positives and

the people in the AIDS stage. Because of this combination along with the aggressive

testing of Cuba, we believe the AIDS data (column 3) to be more reliable than the

HIV data. From Table 4.2, it appears as though from 1990-1992 there was an increase

in the number of newly HIV infected persons. This increase was due to the discovery

and contact tracing, from approximately 1990 to 1992, of a highly sexually active

group (de Arazoza et al., 2003). Because of a United States embargo in 1992, new

HIV testing equipment was no longer available to Cuba (Holtz, n.d.), leading to a

decrease in the number of newly HIV infected individuals being discovered that year.

These two events are highlighted in Fig. 4-2 A model of the HIV epidemic in Cuba

must account for these two significant events.
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Figure 4-2: Socioeconomic factors that influenced diagnosis of HIV positive persons.

4.3 Mathematical models and analysis

4.3.1 Previous Model

De Arazoza and Lounes have modeled Cuba's HIV/AIDS epidemic. They consider

three divisions of the population, undiagnosed HIV positive (U), diagnosed HIV posi-

tive (D), and AIDS (A) with the following constant coefficients (values listed in Table

2):

1. N, total size of the sexually-active population,

2. a, the rate of recruitment of new HIV-infected persons, infected by U,

3. a', the rate of recruitment of new HIV-infected persons, infected by D,

4. kl, the rate at which the unknown HIV-infected persons are detected by the
system ("random" search),

5. k2, the rate at which the unknown HIV-infected persons are detected through
contact tracing,
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6. 3, the rate at which the HIV positives develop AIDS,

7. /p, the mortality rate of the sexually active population,

8. p', the mortality rate of the population with AIDS.

In this model there are two ways individuals can go from unknown HIV infected

(U) to diagnosed HIV-infected (D), through contact tracing (k2 UD)and detection

through all other random searching for seropositives (ki U). Authors assume that the

known HIV infected persons are infectious, but at a much lower rate than those that

do not know they are infected.

Their model equations are:

U' = aNU + a'ND - (k1 + p + f)U - k2UD, (4.1a)

D' = kU + k2UD - (u + /)D, (4.1b)

A' = (U + D) - 'A, (4.1c)

4.3.2 Model Design

To improve upon the previous model by de Arazoza and Lounes, we have made three

major changes:

1. We consider four divisions of the population, susceptible (S), undiagnosed HIV

positive (U), diagnosed HIV positive (D), and AIDS (A). We considered this

to be a closed population and all births equal deaths.

2. We incorporate the variation in infectivity as a person progresses through the

disease, by considering the rate for a susceptible to be infected by an individual

with AIDS, w. With the aggressive "random" testing in Cuba, by the time

individuals progress to the AIDS stage they have been diagnosed. Although

individuals with AIDS are much more infectious than individuals with HIV

(Rapatski et al., 2005), an AIDS individual would have fewer contacts with

susceptible persons compared to the contacts made by undiagnosed individuals

with susceptibles thus, w is lower than the rate for a susceptible to be infected

by an undiagnosed HIV person, denoted a'. When comparing persons in the the

AIDS stage and diagnosed HIV persons, since AIDS stage is more infectious,
we assume the rate for a susceptible to be infected by an individual with AIDS,

w, to be higher than the rate of a diagnosed HIV positive individual, a'.
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3. Undiagnosed individuals are diagnosed by their doctors at a rate ki, and through

contact tracing at a rate k2. We consider three phases for contact tracing, 1986-

1989, 1990-1991 and 1992-2000, and two phases for "random" testing, 1986-1991

and 1992-2000. In each period, kl and k2 are constant. We estimate that during

1990 and 1991 contact tracing increased 25% because of the detection of a highly

sexually active group, and that after 1992 diagnosis by doctors was reduced to

75% of its former value due to the United States embargo. We obtain values of

kl and k2 by fitting the Cuban HIV/AIDS data.

The dynamics of the Cuban HIV/AIDS epidemic are described by the following

model:

S' = -(wA+aU+a'D)S+ 1'A+p/(U+ D), (4.2a)

U' = (wA + aU + a'D)S - (ki(t) + Ip + p)U - k2(t)UD, (4.2b)

D' = ki(t)U + k2(t)UD - (pi + )D, (4.2c)

A' = (U + D) - p'A, (4.2d)

This model holds within each of the periods. The initial conditions for each period

are taken to keep the overall solution continuous (i.e., initial conditions are the final

conditions for the previous period). Solutions to (4.2) with positive initial condi-

tions remain positive for all periods. System (4.2) has a unique solution with initial

conditions (S(0), U(0), D(0), A(0)) = (5.5 million, 230, 94, 3).

4.3.3 Numerical Results

Estimates of ki (t) and k2(t) are obtained by minimizing the following error function.

For each of the fifteen years we compute the square of the difference between our

model epidemic and the Cuban HIV data given in Table 4.2. Let RMS denote the

square root, of the average of those fifteen numbers,

1/2
RMS Error = [ 1 [Dmodel(t) - DHIVData(t)]2 . (4.3)

1986-2000

We select the values of k1 (t) and k2(t) that minimize RMS, by taking the gradient

of the (RMS Error)2 and using Newton's method to find a zero of the vector field.

The parameter values are given in Table 4.2. The initial values for U, D and A
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Table 4.2: Values of parameters used in simulations.

de Arazoza Ours(Source)
N/A 5.5 million (a)

230 230 (b)

94 (b)

3 (b)
8.5. 10- 8

Parameter
S(0)

U(0)

D(0)

A(0)
w

a

a'

[I

[I

ki2(t)

k2 (t)

Description
Initial condition for Sus-
ceptibles
Initial condition for HIV
Undiagnosed
Initial condition for HIV
Diagnosed
Initial condition for AIDS
Rate for a susceptible in-
dividual to become in-
fected by an individual
with AIDS
Rate for a susceptible indi-
vidual to become infected
by an undiagnosed HIV+
individual
Rate for a susceptible indi-
vidual to become infected
by an diagnosed HIV+ in-
dividual
Rate at which HIV+ indi-
viduals develop AIDS
Mortality rate for HIV pos-
itive individuals
Mortality rate for individ-
uals with AIDS
'Random' testing rate per-
formed by doctors

Testing rate due to contact
tracing

3
N/A

9.3267 - 10-

5.4 - 10-'

0.10788

0.75

0.0053

0.3743

2.27.10 - 5 3.26.10 - 5 (e)

5.89-10-4 (e)

UN (2005)
Arazoza & Lounes (2002)
Estimate based on a and c'
Ahlgren et al. (1990)
Estimate to fit data

1986-1991 0.3850 (e)

1992-2000 0.2929 (e)

(a)
(b)
(c)
(d)
(e)

114

9.3267 -10- 8 (b)

5.4 -10- 9 (b)
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Figure 4-3: Comparison of model (4.2), and Arazoza & Lounes (2002) model with
data for HIV positive cases in Cuba.

were chosen to be the same as those used in de Arazoza and Lounes (Arazoza &

Lounes, 2002) and S(0) was estimated to be 5.5 million (assuming half of the 11

million population (UN, 2005) are of a sexually active age). The resulting curves for

both the diagnosed HIV cases and AIDS cases is shown in Fig. 4-3. We compared

our model results with de Arazoza and Lounes model. As seen in Fig. 4-3, our model

is a better fit to the data.

4.3.4 Basic reproduction ratio

The basic reproduction ratio, Ro, is a dimensionless parameter that gives the expected

number of secondary cases per primary case of infection in an entirely susceptible

population. As a result, RO has a threshold value equal to one, i. e., infection will

spread and result in epidemic if Ro > 1, whereas the infection will die out if 'o < 1.

Model (4.2) has a disease free equilibrium (DFE), E0o, given by

Eo : (S, U, D, A) = (So, 0, 0, 0). (4.4)

Ro is calculated for constant values of k1 and k2, that is, there is an Ro for each

time period. We are interested in looking at the stability of a simpler model of (4.2)

with each k constant throughout. We are interested in the final period, with each k

set to their final value.

From Diekmann et al. (1990), Ro is the spectral radius (p) of the next generation
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matrix (see also van den Driessche & Watmough, 2002), K,

Ro = p(K), (4.5)

where K = FV -1 . F and V come from the Jacobian matrix of the linearization of

(4.2) about the DFE. Here, non-negative matrix F shows new infections, and the

inverse of the non-singular matrix V gives the expected times that individuals spend

in each of the compartments. F and V are respectively given by

aS a'S wS kl+ 2+P+k2D 0 0

F= o o and V= -kl-k2D p+P0 (4.6)
0 0 0 -0 -0 P'

The basic reproduction ration for model (4.2) is then given by

S(O) 4a(3 + P)+ + 'k w) (4.7)
0+A ki + O+ P'

An advantage of considering Ro0 on a generation basis, is that we obtain expression

(4.7) for Ro in terms of parameters of the model, which provides implications for the

control of the epidemic which we discuss in Section 4.4.

Since we are interested in the simpler model where k's are constant throughout, our

system becomes an autonomous system. The equilibrium Eo is locally asymptotically

stable if Ro < 1 (van den Driessche & Watmough, 2002), and the population is not

vulnerable to the outbreak of the disease. In the case when Ro > 1, the DFE is

unstable so the disease can invade the population, eventually leading to an endemic

equilibrium. These two types of dynamics are illustrated by simulations of model

(4.2) in Figure 4-4.

4.4 Discussion

In this paper we present a new model for studying HIV/AIDS epidemic in Cuba,

based on the de Arazoza and Lounes model (4.1). We modified their model in three

ways. First, we allow for "random" testing rate (ki) and contact tracing rate (k2) to

vary in time, in order to reflect the fluctuating socioeconomic situation in the coun-

try. Second, we assume that persons who developed AIDS can infect the susceptible

individuals. Even though the people in the AIDS class have fewer sexual contacts
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than the asymptomatic, HIV-positive individuals, symptomatic individuals are highly

infectious. The viral load in the symptomatic (AIDS) stage can be up to 150 times

higher than in the asymptomatic stage (Rapatski et al., 2005), so the probability of

transmission of HIV remains substantial in the symptomatic stage and we include it

in the model (parameter w). Lastly, since total population in Cuba is much greater

(more than four orders of magnitude) than the number of people affected by HIV and

AIDS, Arazoza & Lounes (2002) assume that the susceptible population is constant

in time, and thereby reduce a dimension in their system. We, on the other hand,

model the changes in the susceptible class as well.

To test our model we have used the yearly HIV-positive, AIDS cases, and deaths

due to AIDS in Cuba in the period 1986-2000 (Table 1 from Arazoza & Lounes (2002)).

Data includes newly HIV-infected people, the number of people who developed AIDS

symptoms, and the number of people who died from complications of AIDS. From

the data we cannot infer the time of HIV-infection.

The current state of the HIV/AIDS epidemic in Cuba is described with the pa-

rameter values given in Table 4.2. For these values, Ro > 1, so the number of new,

diagnosed and undiagnosed, HIV infections in Cuba is increasing. However, compared

with Ro values for sub Saharan Africa (9.62 Rapatski et al., submitted), and India

(31 Rapatski et al., submitted), Ro for the Cuban epidemic is very small.

As long as Ro remains greater than one, the HIV/AIDS epidemic will continue

to spread in Cuba. Mechanisms that decrease the value of Ro in (4.7) below the

threshold are the mechanisms that can put the epidemic under control. Equation

(4.7) suggest two different ways of controlling the epidemic: increasing the rate at

which unknown HIV-infected persons are detected (kl), and decreasing the rate of

infection (a).

Let us look at the two possible mechanisms of control more closely. Increasing

the testing rate requires more effective, precise and affordable HIV-detection tests,

and a thorough and systematic testing organized by the public health system. As

increasing the detection rate depends on advances in biotechnology and the structure

of the public health system, increasing testing rate enough to bring Ro below the

threshold is unlikely at the moment. On the other hand, there are widely-available,

affordable methods that decrease the infection rate, a. The proper usage of condoms

has been shown to reduce the risk of transmission of HIV in two ways. Condom

usage reduces the risk of transmission of HIV itself, but it also significantly reduces
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the risk of transmission of other sexually transmitted infections (STIs). Since many

STIs can cause abrasion of the genital skin and membranes, STIs may facilitate both

transmission and acquisition of HIV (Moss et al., 1987). Given that less than a

third of people use condoms with their non-regular partners (Gardner et al., 1999),

increased condom usage is a promising measure against future spread of HIV/AIDS

epidemic in Cuba.
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Abstract

Time delays produced by dispersal are shown to stabilize Lotka-Volterra predator-
prey models. The models are formulated as integrodifferential equations that describe
local predator-prey dynamics and either intrapatch or interpatch dispersal. Dispersing
individuals may (or may not) differ in the duration of their trip; these differences are
captured via a distributed delay in the models. Our results include those of previous
studies as special cases, and show that the stabilizing effect continues to operate when
the dispersal process is modelled more realistically.

5.1 Introduction

Interest in the stability of predator-prey and host-parasitoid systems has continued

unabated since the theoretical work of Lotka (1926), Volterra (1931), and Nicholson

and Bailey (1935) and the experimental work of Gause (1934). The central question

raised by their work is this: how do predator-prey systems apparently persist stably

in nature when the most basic models and experiments predict instability? The an-

swer most often given is that the models and experiments omit processes that affect

stability in natural systems. To support this answer, theoreticians and experimental-

ists have proceeded to investigate the stability mediating effects of a long list of such

processes (for examples see May 1973, Hassell 1978, Crawley 1992, and Mueller and

Joshi 2000).

The basic theoretical tool in these investigations is the system of Lotka-Volterra

equations for a prey with population density N(T) and a predator with population

density P(T):

dNdN - (R - AP)N, (5.1a)
dT
dPdP - (BN - M)P. (5.1b)
dT

In the absence of predators, the prey population grows exponentially at the rate R,

and in the absence of prey, the predator population decays exponentially at the rate

M. The predator-prey interaction is captured by linear functional and numerical

responses, scaled by the parameters A and B. The parameters R, A, B, and M are

assumed to be positive.

The Lotka-Volterra predator-prey model is often criticized because its single, pos-

itive, equilibrium point is a center, i. e., a "neutrally stable" equilibrium surrounded
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by a family of periodic orbits whose amplitudes depend on the initial population

sizes. The slightest change to the model's structure typically results in qualitatively

different behavior. For example, if R decreases linearly with prey density the equilib-

rium point is stable; on the other hand, introducing a saturating (Type II) functional

response turns the equilibrium into an unstable spiral point (Gotelli 1995). This

structural instability, the critics argue, means that the model cannot make any pre-

dictions that are robust enough to be tested. After all, we know that model (5.1)

does not adequately describe even the most highly-controlled experiments.

Structural instability can, however, be used to our advantage. In effect, it allows

us to use the Lotka-Volterra model as an exquisitely sensitive balance, with which we

can determine the effects of the processes that it ignores. So, when we say that a Type

II functional response is destabilizing, we mean that it destabilizes the equilibrium

point in model (5.1). Similarly, when we say that the presence of carrying capacity

for the prey tends to be stabilizing, we mean that it stabilizes the equilibrium point.

There is a long tradition of using the Lotka-Volterra equations in this way (Murdoch

and Oaten 1975), and we continue that tradition here.

Among the many processes that the Lotka-Volterra equations ignore, those with

a spatial component have always attracted attention (Mueller and Joshi 2000). In

particular, the presence of a metapopulation structure (i. e., locally interacting popu-

lations coupled via dispersal) can have interesting and variable effects (Hanski 1999).

Taylor (1990) and Mueller and Joshi (2000) briefly review this topic.

The simplest metapopulation model consists of two habitat patches. A simple

two-patch extension of the Lotka-Volterra model (5.1) is given by:

dNl/dT = (R - APi) Nz + DN[Nj - Ni], (5.2a)

dPj/dT = (BNi - M) Pi + Dp[Pj - Pi], (5.2b)

for i = 1, 2 and j $ i (Comins and Blatt 1974). The subscripts indicate the patch

number; DN and DR are the prey and predator emigration rates.

Because predators are often more mobile than their prey, many authors have

studied a, simplified version of model (5.2) with DN = 0. Jansen and de Roos (2000)

provide a concise review of the dynamics of this model (also see Murdoch and Oaten

1975, Murdoch et al. 1992, Nisbet et al. 1992, Jansen 1995). When Dp > 0, there is a

constant per capita predator migration rate between the patches. This coupling does

not change the equilibrium values; there is a spatially homogeneous equilibrium with
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population sizes in each patch equal to their sizes in the uncoupled case. Furthermore,

coupling the two populations via predator dispersal does not change the stability of

the equilibrium point. The equilibrium is surrounded by a planar family of unstable

periodic solutions on the subspace defined by N1 = N2 and Pi = P2. Any initial

differences in prey or predator population sizes between the two patches eventually

disappear, so orbits converge to this plane. Large amplitude cycles in this plane are

unstable to perturbations off the plane, while small amplitude orbits are stable to

off-plane perturbations. There appear to be heteroclinic orbits connecting the large

amplitude solutions to the small amplitude solutions. Thus perturbations to periodic

orbits tend to result in periodic orbits of smaller amplitude. Only in this weak sense

can predator dispersal (as described in model (5.2) with DN = 0) be thought of as

stabilizing. None of the periodic orbits is asymptotically stable (perturbations in the

plane do not decay) and unless the initial condition is set exactly at the equilibrium

value in each patch, the populations will ultimately cycle in synchrony.

So, predator dispersal by itself seems to be insufficient to stabilize the Lotka-

Volterra predator-prey interaction. But the description of dispersal in model (5.2) is

artificial in an important way: dispersers leaving one patch immediately appear in

the other patch. In nature, dispersers take a finite amount of time to complete their

trip. During this time, migrating individuals are typically not participating in the

predator-prey interaction because the two species are in different places (Weisser and

Hassell 1996, Weisser et al. 1997).

In this paper, we develop a general way to explicitly account for individual travel

times, and show that dispersal is almost always stabilizing when an explicit travel-

time is incorporated in the model. We are not the first to demonstrate this effect.

Holt (1984) and Weisser and Hassell (1996) studied the effect of dispersal on the

stability of a predator-prey system in a single patch. They coupled this patch to

itself via constant per capita emigration (at rate E) and immigration (at rate I) into

and out of a pool of dispersers (with density Q(T)). When predators disperse, the

model has the form

dNdT - (R - AP)N, (5.3a)dT
= (BN - M)P - EP + IQ, (5.3b)dT

dQ = EP- IQ- SQ. (5.3c)
dT
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The term SQ accounts for mortality during dispersal. They found that this pool of

dispersers was always stabilizing, and that the stabilizing effect was also produced

by a pool of dispersing prey. Holt (1984) and Weisser et al. (1997) extended these

results to a system of multiple patches coupled through such a dispersal pool.

Model (5.3) captures the essential fact that some fraction of the predator popu-

lation is dispersing, and therefore not consuming prey in habitat patches. However,

like the linearly coupled Lotka-Volterra model (5.2), model (5.3) makes some peculiar

assumptions about the way dispersal occurs. In effect, it implies that there is an

exponential distribution of trip durations. Thus there is no minimum travel time, no

maximum travel time, and the peak of the travel-time distribution is at zero. Indeed,

no matter how long the trip, there is a finite probability that a given predator will

survive an even longer trip, dispersing without sustenance.

Although the properties of the dispersal process described by model (5.3) are

unrealistic, they are no more unrealistic than other assumptions imbedded in the

Lotka-Volterra model. Nevertheless, it is important to see if the above stabilizing

effects discovered by Holt and Weisser et al. hold when dispersal is described more

realistically.

In the next section, we formulate a model similar to (5.3) that allows for an

arbitrary distribution of trip durations. We show that when only one species disperses,

the equilibrium is almost always stabilized by including a finite travel time. The

exception occurs when every trip has exactly the same duration. In this case there is

a set of parameters values with zero-measure for which it is not possible to determine

stability via the linearization method we use. In Section 3, we formulate a two patch

version similar to model (5.2), and derive similar results. In Section 4 we consider

multiple patches with two connection configurations. We have relegated some of the

technical mathematics required to prove our results to the Appendix. We conclude

with a brief discussion.

5.2 Dispersal Delays in 1 Patch Models

Because of the differences between individuals and the vagaries of travel, it is rea-

sonable to assume that dispersal time varies among individuals and between trips for

a single individual. To incorporate this variability, we define a probability density

function, G(S) > 0, for the time it takes an individual to disperse, given that the in-
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dividual survives the trip. The product G(S) dS is the probability that a successfully

dispersing individual departing at time T completes its trip between time T + S and

time T + S + dS. Because each such disperser has a nonnegative travel time,

j G(S) dS = 1. (5.4)

If there is a constant probability per unit time (Md) for the disperser to perish while

travelling, then exp(-MdS) is the probability of surviving a trip of duration S.

Incorporating a distribution of travel times in a single-patch model where both

prey and predators disperse gives:

dN = (R - AP)N + DN GN(S) e- N(T - S) dS - N, (5.5a)

dP (= (BN - M)P + Dp r Gp(S) e- M S P(T - S ) dS - (5.5b)

Here, and below, when the time dependence of a variable is not explicitly indicated

we follow the convention that the variable is evaluated at the current (undelayed)

time. We assume that the parameters DN, Dp, MN and Mp are nonnegative.

The analysis of model (5.5a) is simplified by rescaling variables and parameters

via

t =RT, s= RS, t = M/R, pi, = MN/R, pp = Mp/R, (5.6a)

p = AP/R, n = BN/R, dn= DN/R, dp = Dp/R. (5.6b)

Using these new variables converts model (5.5a) to the dimensionless form

= (1 - p) n+dn [ g,(s) e-"n n(t - s) ds - n (5.7a)

= (n - i)p+ + dp[ gp(s) e -t 'P p(t - s) ds - p , (5.7b)

where gn(s) and gp(s) are the rescaled versions of GN(S) and Gp(S). The dot is used

to denote a derivative with respect to t. For the basic theory of delay differential

equations that applies to model (5.7) see Cushing (1977) and Kuang (1993).

When both species are mobile, with their own characteristic emigration rate,

travel-time distribution, and mortality rate during transit, the analysis of model (5.7)
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is difficult. For simplicity, we therefore restrict attention to the special cases in which

only one species disperses.

5.2.1 Predator Dispersal (dn = 0, dp > 0)

When prey do not disperse (dn = 0), model (5.7) has two equilibria. The first, at

(0, 0). is always unstable to prey invasion. The second equilibrium is at

n* = p + dp(1 - g,(pp)), p* = 1, (5.8)

where pg is the (one-sided) Laplace transform of the travel-time distribution gp. That

is,

p(x=) j gp(s) e- x ds. (5.9)

For real x, pg(x) is a positive, decreasing function with pg(0) = 1.

We now show that the equilibrium point (5.8) is locally asymptotically stable for

any finite travel-time distribution gp(s) that has measurable support. We begin by

linearizing model (5.5a) in the neighborhood of the equilibrium point (5.8). Let u(t)

and v(t) be small perturbations to the equilibrium point. That is, let

n(t) = n* + u(t), p(t) = p* + v(t), (5.10)

with uLI << n* and Ivl << p*. The dynamics of u and v are approximately given by

the linear system

it = -n*v, (5.11a)

ij= p*u + dp e"Psgp(s) v(t - s) ds - p(pp)v , (5.11b)

to which we look for exponential solutions of the form

) = wet. (5.12)

Using (5.12) in system (5.11) we obtain the system of equations Jw = 0, where

S= [ (5.13)
J= -p* A• + dp[§p(yp) - §p(pp + A•)] (.3
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The existence of a nontrivial solution w requires that det(J) = 0, which in turn gives

the characteristic equation

H(A) = K(A), (5.14)

where

H(A) = A[A + dpgp(pp)] + n*p*, (5.15)

and

K(A) = / dp gp,(~p + ). (5.16)

We next show that all roots of the characteristic equation (5.14) have negative

real parts, and hence that the equilibrium (5.8) is locally asymptotically stable. To

do so we first eliminate the possibility of roots with positive real parts by assuming

the existence of such roots and deriving a contradiction. Secondly, we eliminate the

possibility of purely imaginary roots, again by deriving a contradiction. Finally, note

that A = 0 is not a root, since H(0) > 0 and K(0) = 0. The only possibility that

then remains is that the real parts of all of the roots are negative.

Let A = x + iy, with x and y real. Assuming that x > 0, the characteristic

equation gives

|H(A)12 = K(A)12, (5.17a)

= (x + iy) dp g,(p, + x + iy)j2, (5.17b)

< I(x + iy) dp gp(,(p)l 2 ,  (5.17c)

which, after a little algebra, reduces to

x4 + 2x 2(n*P* + y 2) + 2xdp(x 2 + n'p* + y2)2p(t(p) + (y2 - n*p*) 2 < 0. (5.18)

Since we have assumed x > 0, each term on the left-hand side of expression (5.18)

is nonnegative and at least one term is positive, thus the left-hand side is positive,

violating the inequality. As a result, the roots of the characteristic equation cannot

have positive real parts, thus x < 0.

Now assume x = 0. Setting x = 0 in the characteristic equation (5.14), and

separating the equation into its real and imaginary parts, shows that y must be a
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solution to the system

n*p* - y2 = dp Y gp(s) e - ps sin(ys) ds, (5.19a)

dp y §p(pp) = dp y gp(s) e- "P cos(ys)ds. (5.19b)

But in the Appendix, we prove that for travel-time distributions gp(s) that are finite

and have support on a measurable set, there is no real solution to system (5.19). Thus

x # 0, and since x < 0, it must be that x < 0, and hence the equilibrium is locally

asymptotically stable.

Discrete Delays

For our proof that system (5.19) has no real solution, we must assume that the

travel-time distribution is finite. This requirement is satisfied by most biologically

reasonable distributions, including the exponential distribution implicitly assumed by

models that use a pool of dispersers (Holt 1984, Weisser and Hassell 1996, Weisser et

al. 1997), or the gamma distribution that is often used as a convenient distribution

because it makes numerical simulation easy (MacDonald 1989).

However, if every trip of every individual is of exactly the same duration T, the

travel-time distribution is a delta function: gp(s) = 6(s - 7). In this case, the dis-

tribution is not finite and our proof does not apply. The assumption of identical

trips is certainly unrealistic. Nevertheless, we will analyze this case below because

there is a long tradition of using discrete delays in population biology to account for

individual development (Hutchinson 1948; Wangersky and Cunningham 1956, 1957a,
1957b; Caswell 1972; and many others), and we would like to compare the results of

discrete-delays in our model with these results. Furthermore, the analysis sheds light

on the reasons why dispersal delays are stablizing.

We now show that, except on a parameter set of measure zero, the equilibrium

point remains locally asymptotically stable when all trips are of the same duration.

The argument we have already laid out, up to and including the characteristic equa-

tion (5.14) holds with gp(pp) = exp(-uppr). In addition, our proof that there are no

roots with positive real part carries over to this case. For imaginary roots A = iy,
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equations (5.19) simplify to

n*p* - y2 = dpye-"P' sin(yT), (5.20a)

dpy e- "P = dp y e-" cos(y-). (5.20b)

By (5.20a), y # 0. Equation (5.20b) is satisfied only when cos(yT) = 1, in which case

equation (5.20a) gives y = ±n'p& * and equation (5.20b) gives,

7=Tk 2k- , for k = 0, 1, 2,..., (5.21)

with n* and p* given by (5.8). Note that in (5.8), n* depends upon 7 so that (5.8)

and (5.21) must be solved simultaneously to find Tk for any set of parameters.

When 7- Tk the equilibrium is locally asymptotically stable. If T = Tk, then

the characteristic equation has purely imaginary roots at ±i V p. For k = 0, the

model reduces to a dimensionless form of the Lotka-Volterra equations (5.1), with

a neutrally stable equilibrium surrounded by a family of periodic solutions. When

k > 0 we cannot infer the stability (or instability) of the equilibrium point from the

linearized analysis.

5.2.2 Prey Dispersal (dn > 0, dp = 0)

When only prey disperse, dp = 0, and the nontrivial equilibrium of model (5.7)

becomes

n* = p, p* = 1 - d,(1 - g. (p)). (5.22)

If either the prey emigration rate (d4) or the prey mortality rate while dispersing (An)

is too large, both prey and predators are unable to persist, and the equilibrium at

(0, 0) becomes stable.

Linearizing about (n*, p*), with p* assumed positive, gives the same characteristic

equation (5.14) as in the predator dispersal case, with dp, p,, and gp replaced by

d4, An, and gn. Thus the results of Section 2.1 hold for mobile prey and sedentary

predators whenever p* > 0.
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5.3 Dispersal Delays in 2 Patch Models

Incorporating a distribution of travel times for both the predator

2-patch Lotka-Volterra model (5.2) gives

dN /dT (R - AP) N + DN [jGN(S) e - M N S Nj(T -

dPj/dT = (BNi - M) Pi + D[ Gp(S) e-MPS PJ(T -

for i,j = 1,2

model (5.23)

and its prey in the

S) dS - Ni ,
(5.23a)

S) dS -Pl,
(5.23b)

and j / i. Using the rescaled variables (5.6), now subscripted, converts

to the dimensionless form

i = (1- pi)n+dn 9n(s) n(t - s) ds - ni ,

S = ( p+d (s (t0s)ds

(5.24a)

(5.24b)

Again, we analyze only the cases in which one species disperses. When only preda-

tors disperse (i. e., d, = 0, dp > 0), model (5.24) has a unique positive equilibrium

that is spatially homogeneous with densities equal to the equilibrium densities in the

1-patch model with predator dispersal: n = nj = n* and pl = p* = p* with n* and

p* given by (5.8). Linearizing model (5.24) in the neighborhood of this equilibrium

gives, in analogy with (5.13)

with

A B
B A

(5.25)

A= - dp() and B= (5.26)
0

-dpjp(pp + A)

Setting det(J) = 0 yields the following characteristic equation:

H2 (A) = K2 (A), (5.27)

with H(A) and K(A) as in the single patch model (i. e., given by (5.15) and (5.16)).
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The arguments in Section 2 can now be applied almost unchanged. For any

finite travel-time distribution with support on a measurable set, the equilibrium is

stabilized. The only change comes in the discrete-delay case, when the travel-time

distribution is a delta function. In this case equations (5.20) must be modified,

because any A = iy that satisfies H(A) = K(A) or H(A) = -K(A) is a purely

imaginary eigenvalue. Thus equations (5.20) become

n*p* - y2 = dpye -•'pT  sin(yT), (5.28a)

dpye - P'" = ±dye- "P' cos(yT), (5.28b)

which now give y = ± *rfip and 7 = Tk/2 (cf. equation (5.21)). When 7 is equal to

one of these special values, the eigenvalues are purely imaginary, and thus linearization

cannot be used to determine the stability of the equilibrium point.

When only prey disperse (i. e., d, > O0, dp = 0), the unique nontrivial equilibrium is

also spatially homogeneous and equal to the equilibrium densities of the 1-patch, prey-

dispersal model (equations (5.22)), which we assume to be positive. The linearization

still gives the matrix (5.25), but with B now given by

B = [-dn(Ln (n A) 0 (5.29)
0 0

Setting det(J) = 0 again gives the characteristic equation (5.27), but with all sub-

scripts changed from p to n. All of the just derived two-patch predator-dispersal

results therefore carry over to the prey-dispersal case.

5.4 Multiple Patches

We are also able to prove that one-species dispersal delays are stabilizing in con-

figurations of an arbitrary number of patches that admit a spatially homogeneous

equilibrium. In such configurations every patch is identical to every other patch. A

ring of m 2 3 patches is perhaps the simplest example. In the predator dispersal
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case, the ring model is given by:

?it = ( -p i)ni

i = (ni - p) pi+

[ gp(s) e- ps (pi l(t - s) + pi+1 (t - s)) ds - 2p1 ,

(5.30a)

(5.30b)

for i = 1,... , m. To close the ring, define Po = Pm and pm+1 = Pl.

The equilibrium (5.8) remains unchanged. Linearizing around it and substituting

an exponential solution gives the characteristic equation det(J(m)) = 0, with the

2m x 2m matrix J(m) given by

J(m) =

A 1B 0

2

2

0

0 1B0 0 0B2
0 ... 0

1B -.. 02

with blocks A and -B given by (5.26).

J(m) is an example of a block-circulant matrix with 2 x 2 blocks. That is, it has

the form
Ao A1  ... Am-1

Am-1 Ao .-- Am-2

A1 A2 .-. Ao

(5.32)

where the Ai are 2 x 2 matrices. The determinant of such matrices is given by

m-1

det C = 1- det Te,
e=O

m-I
Te = e2rijf/mA,

j=0

(5.33)

(5.34)

(see, for example, Friedman (1961, Theorem 6)). Applying these formulae to J(m)
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gives m-1 (2
detJ(m) = (H(A) - cos ) K(A)) (5.35)

f=0

If A is an eigenvalue, at least one term in the product (5.35) will vanish, i. e.,

H(A) =_ cos ( K(A) (5.36)rn )

for some f < m. But taking absolute values of both sides and squaring gives IH(A)12 2

jK(A)12, which brings us back to equation (5.17) and the single patch case. Distributed

dispersal delays are always stabilizing in this "ring" model.

For discrete delays of duration 7, the real and imaginary parts of equation (5.36)

give, in analogy to equations (5.20),

n*p* - y2 = cos (2w) dpyeP" sin(yT-), (5.37a)

dp y e- P' = cos ( dp y e- "P cos(yr). (5.37b)m

While y = 0 is always a solution to (5.37b), it is never a solution to (5.37a). We

therefore take y $ 0. If the number of patches in the ring (7n) is odd, there is only

one value of f with f < m for which (5.37b) has a solution; it is f = 0. In this case

purely imaginary eigenvalues occur at T = -Tk, with Tk given by equation (5.21). If

the number of patches is even, imaginary eigenvalues occur at - = Tk/2. For k even

they arise from (5.37b) with e = 0. For k odd, they come from (5.37b) with e = m/2.

Linearization is uninformative for these delays.

Another configuration with all patches identical is obtained if each patch is coupled

to every other patch in exactly the same way (e. g., through a pool of dispersers). The

resulting model in this case is

Ai = ( - pi) ni (5.38a)

Pi = (ni - ) pi + dp
m-1 { [jgp(s) e-1P Pj (t - s) dsj - (m - )pi } (5.38b)

j=l,joi 
0

for i = 1,..., m. For m = 2, this model reduces to the two-patch model of Section

2.1; for m = 3 it is the same as model (5.30). We therefore take m > 4.
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Linearization around the equilibrium (again given by (5.8)) gives

J(m) =

A B ... ... 1Bm-1 m-1

M1I-B A 1iB .. 1 Bm-1 m-1 m-1

IB 1B A
m-r m-1

(5.39)

and the resulting characteristic equation is

m-1 1 m-1 27rij
det(J(m)) = f H(A) 1 exp 2m K(A). (5.40)

f=o - m m- 1 ( j=1 ( M )
By the argument used on the determinant (5.35), it follows that, for a distributed

delay, the conclusions are the same as in the single-patch case. A discrete-delay of

duration 7 is also stabilizing, unless T = 7k.

5.5 Discussion

The predator-prey models we formulated above, wherein one species disperses between

habitat patches while the other does not, all show that a dispersal delay almost always

stabilizes the spatially homogeneous positive equilibrium. It is well known that the

inclusion of a delay can lead to a qualitative change in the dynamics of a model, but

it is typically the case that an increase in the delay produces instability and gives rise

to stable periodic solutions (see, e. g., MacDonald 1989, p. 8, 15). In this sense, our

results can be seen as counterintuitive, although some models with delay-dependent

parameters exhibit stability switches from stable to unstable and back to stable again

as the delay increases (see, e. g. Beretta and Kuang 2001).

What is the mechanism by which dispersal delays act to stabilize these systems?

First let us say that certain mechanisms are not responsible. The stabilizing effect

is not (strictly speaking) a metapopulation effect. After all, it is evident in the one-

patch model. It is not an effect of a cost of dispersal (in terms of increased mortality).
After all, the mechanism operates when p, or pn vanish. Finally it is not a result of

spatial heterogeneity; every patch is identical to every other patch in our models.

The stabilizing mechanism that does operate is evident in the one-patch predator-

dispersal model. In particular, consider the case where pp = 0. In this case, the term
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that accounts for predator dispersal can be rewritten as

(t) {d [ff gp(s) p(t - s) ds (5.41)

The term between the curly brackets represents the instantaneous per capita net mi-

gration rate (i. e., immigration minus emigration). It is density dependent. If the

population in the patch is high relative to historically average values (the average

being taken with respect to the weighting function gp(s)), then net migration is neg-

ative; if the current population size is low relative to historical averages, then the

net migration rate is positive. This term therefore has the effect of damping oscilla-

tions and enhancing stability. The same mechanism also works in the multiple-patch

scenario.

Murdoch et al. (1992) also showed that "temporal density-dependence" in immi-

gration rates can stabilize predator-prey metapopulation dynamics. The fundamental

difference between their results and ours is the mechanism by which the density-

dependence is generated. In their model, spatial heterogeneity in the demographic

parameters generates asynchronous population dynamics between connected habitat

patches, which leads to a decoupling of local immigration rates from local popula-

tion density. In our model, no such spatial heterogeneity is required to generate the

decoupling. Instead, dispersal tends to synchronize the dynamics between patches,

while the delay decouples immigration rates from local density.

When the delay is discrete, there is a set of delays for which we have not been

able to determine the stability of the equilibrium. Because this set of delays has zero

measure, these cases are biologically irrelevant. Nevertheless, an understanding of the

dynamics in these cases would complete the mathematical analysis. We conjecture

that for these special values of the delay, dispersal does not stabilize the equilibrium.

The models we have analyzed, while more complex than the Lotka-Volterra model,

are still simple in the extreme. An important simplification we have made is that ev-

ery patch is identical to every other patch--including being connected via dispersal to

the same number of equidistant patches. In real systems, this assumption is violated.

When the distance between patches is not constant, the travel time distribution will

differ for different pairs of patches. Models of this type are notoriously difficult to

analyze, but it is important to know the extent to which our results rely on this as-

sumption. The interaction between more realistic population dynamics and dispersal
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delays is a topic that we are currently investigating and will report elsewhere.
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Abstract

It takes time for individuals to move from place to place. This travel time can
be incorporated into metapopulation models via a delay in the interpatch migration
term. Such a term has been shown to stabilize the positive equilibrium of the classical
Lotka-Volterra predator-prey system with one species (either the predator or the
prey) dispersing.

We study a more realistic, Rosenzweig-MacArthur, model that includes a carrying
capacity for the prey, and saturating functional response for the predator. We show
that dispersal delays can stabilize the predator-prey equilibrium point despite the
presence of a Type II functional response that is known to be destabilizing. We also
show that dispersal delays reduce the amplitude of oscillations when the equilibrium
is unstable, and therefore may help resolve the paradox of enrichment.

6.1 Introduction

The basic models of predator-prey and host-parasitoid systems predict unstable equi-

libria, often accompanied by large-amplitude oscillations in both species. These oscil-

lations drive the populations to low densities, and have been interpreted as potential

causes of extinction. In contrast, natural predator-prey systems seem to persist for

long periods. Theoreticians and experimentalists have suggested a number of po-

tential processes that might resolve this conflict between models and data (see, for

example, May, 1973; Hassell, 1978; Crawley, 1992; Mueller & Joshi, 2000). Spatial

processes, and in particular metapopulation structure, have garnered significant at-

tention (Taylor, 1990; Briggs & Hoopes, 2004).

Dispersal, the process that distinguishes spatial models from their nonspatial coun-

terparts, has been added to predator-prey models in many different ways, with vary-

ing effects on stability (Briggs & Hoopes, 2004). One way to include dispersal is to

distinguish a class of dispersing individuals, that, while dispersing, do not participate

in the predator-prey interaction. A number of authors have shown that including

such a pool of dispersers (be they predators or prey) in a Lotka-Volterra model sta-

bilizes coexistence at an equilibrium point. The models of Holt (1984), Weisser &

Hassell (1996) and Weisser et al. (1997) include the dispersal pool explicitly, and

couple it to the dynamics within a patch via constant per capita immigration and

emigration rates. These models implicitly assume an exponential distribution of the

time that an individual spends dispersing.

Exponential travel-time distributions, however, have some biological peculiarities.
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For example, there is no maximum travel time, and the modal travel-time is zero.

To see if these implicit assumptions play a role in stabilizing the equilibrium, Neu-

bert et al. (2002) relaxed this assumption by prescribing an arbitrary distribution

of dispersal times. They showed that, except in cases so rare as to be biologically

irrelevant, the stabilizing effect of such "dispersal delays" remains.

All of these analyses are based upon the Lotka-Volterra predator-prey model

dNdN = (R - AP)N, (6.1a)dT
dP

= (BN - M)P, (6.1b)dT
where N is the population density of the prey and P is the population density of

the predator. The prey population has a constant per capita growth rate R, and the

predator population has a constant per capita mortality rate M. The predator-prey

interaction is captured by linear functional and numerical responses, scaled by the

parameters A and B. The parameters R, A, B, and M are assumed to be positive.

Model (6.1) has a unique coexistence equilibrium point (i. e., an equilibrium point

at which both species have positive densities) at N = M/B, P = R/A. This equi-

librium point is a center, surrounded by a family of periodic orbits whose amplitudes

depend on the initial population sizes. Adding either predator or prey dispersal to

this model stabilizes the equilibrium point if dispersal delays are accounted for (Neu-

bert et al., 2002). In the absence of delays, predator dispersal reduces the amplitude

of the oscillations but does not stabilize the equilibrium point (Jansen, 1995; Jansen

& de Roos, 2000). Increasing the number of patches in this model gives rise to other

equilibria in which the prey are absent from one or more patches (see, for example,

Feng & Hinson, 2005) that we do not consider here.

Model (6.1), and its spatial extensions, have been criticized as being oversimplified

for two reasons. First, in the absence of the predators, the prey grow exponentially

without bound. Second, the per capita rate of consumption of prey by predators

grows in proportion to the prey population size, implying that individual predators

can process prey items infinitely fast. These faults are eliminated in the Rosenzweig-
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MacArthur model (Rosenzweig & MacArthur, 1963)

dN RN (l N) ANP (6.2a)
dN N N1- (6.2a)dT K C+N'

dP BNPdP = BNP MP, (6.2b)
dT C+N

which includes a carrying capacity for the prey (K) and a finite prey handling time

for the predators that results in a saturating functional response. Here, A is the

maximum rate at which an individual predator can consume prey and C is the prey

density at which an individual predator's consumption rate equals A/2. The ratio

B/A gives the fraction of consumed prey that are converted into predators.

The dynamics of model (6.2) are more complicated than those of model (6.1)

(Kot, 2001). For small values of carrying capacity, the coexistence equilibrium point

is locally asymptotically stable. As the carrying capacity increases beyond some

threshold value, the equilibrium point becomes unstable, and trajectories are drawn

onto a single stable limit cycle. The amplitude of predator-prey oscillations increases

with increasing prey's carrying capacity, reaching vanishingly small densities at which

natural populations cannot persist. This destabilization by increasing prey carrying

capacity is known as the 'paradox of enrichment' (Rosenzweig, 1971; May, 1972;

Gilpin, 1972).

Here we present three major findings. First, we show that dispersal delays can sta-

bilize the coexistence equilibrium point of model (6.2) (as they did in model (6.1)) by

delineating the stability region in parameter space. Second, we show that for many pa-

rameter values, stability persists in a so-called "Type II model" wherein prey growth

is density independent (i. e. model (6.2) in the limit of infinite carrying capacity K).

We thus establish that delayed dispersal can overcome a destabilizing Type II func-

tional response even in the absence of stabilizing prey density-dependence. Finally,

we show that dispersal delays help resolve the paradox of enrichment by reducing the

amplitude of oscillations when the equilibrium is unstable, thereby preventing the

small population sizes that might lead to extinction.

We begin, in the next section, by constructing a Rosenzweig-MacArthur model

that incorporates dispersal delays. Using the methods outlined in Neubert et al.

(2002), it can be shown that if dispersal delays stabilize the single patch model they

also stabilize a spatially homogeneous equilibrium of a model with an arbitrary num-

ber of identical patches. Therefore, we limit our investigation to a single habitat
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patch from which only predators disperse. We then present results for two types of

dispersal delay: a discrete delay that implies that all individuals spend exactly the

same amount of time away from the patch, and a distributed delay that accounts for

differences in, for example, dispersal ability between individuals. For discrete-delays

our results are derived from numerical simulations. In the case of a distributed delay

with Erlang distribution, we analytically derive a polynomial characteristic equation.

whose roots we find numerically. We conclude with a brief discussion.

6.2 Model

The model that we analyze,

dN RN N\ ANP
=T RN 1 ) (6.3a)dT K C + N'

dP BNPdP BNP - MP + D G(S) e-MPSP(T - S) dS - P (6.3b)
dT C+N

describes the dynamics of a sedentary prey and a mobile predator in a single habitat

patch. Individual predators emigrate from the patch at the constant per capita rate

D, and return S units of time after their departure.' To account for the differences

in dispersal abilities between predators, we define a distribution of dispersal delays,

G(S) > 0, for the time a predator takes to disperse, given that it survives the trip

(Neubert et al., 2002). Because all dispersal times are nonnegative it follows that

fo G(S) dS = 1 (see also Azer & van den Driessche, 2006). We assume that the

probability of surviving a trip of duration S is e-M ps, where Mp is the mortality rate

during the migration.

Model (6.3) takes the form of a delay differential equation with distributed delay.

For examples of how such equations have been used in other types of ecological models,
and for how they may be analyzed, see the books by Kuang (1993) and MacDonald

(1989).

In order to reduce the number of parameters, and simplify our analyses, we scale

1For notational convenience, a variable with no time dependence explicitly given is to be evaluated
at the current (undelayed) time.
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the variables and parameters of the model (6.3) according to

t = RT, s = RS, y = M/R,

p = AP/RC, n = BN/RC,

d = D/R, pp = Mp/R,

E= R/B, n = KB/RC.

(6.4a)

(6.4b)

Substitution into system (6.3) gives the dimensionless form

n = (n 1- np
1 + n'

(6.5a)

(6.5b)g(s) e-"Psp(t - s) ds - p]

where g(s) is the scaled version of G(S).

In Sec. 3, we focus on the effects of K (the dimensionless carrying capacity)
and d (the dimensionless emigration rate) on the stability of the unique coexistence

equilibrium for model (6.5):

n* - (6.6)
1 - E [p + d (1 - g(pp))] '

Here, g(x) is the (one-sided) Laplace transform of the travel-time distribution g(s),
i. e.,

g() - g(s) e-~ds. (6.7)

The equilibrium (6.6) is positive only if

K, (1 - EI) - A
d <

(nE + 1) [1 - g(pp)]"
(6.8)

If d is too large, and inequality (6.8) is violated, the predators do not spend sufficient

time feeding on the prey patch to maintain a positive growth rate and are extirpated

as a result.

To determine the stability of the coexistence equilibrium point (6.6) of model (6.5)

we must determine the fate of small perturbations, u(t) and v(t), to the coexistence

equilibrium. Set

n(t) = n* + u(t), (6.9)

For lul and Ivl sufficiently small, the dynamics of these perturbations are approxi-
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mated by the linear system

U 2n* p* n*
K (1 + en*)2 +  v (6.10a)

U p* n*
· 1 + en* 1 + en*

+ d gg(T)e-"Pv(t - T)dT. (6.10b)

Looking for solutions to (6.10) of the form

( =wet, w 0, (6.11)

we find that A and w must satisfy

(J - AI)w = 0, (6.12)

where J is the Jacobian matrix

1 2n* p* n*
S (1+En*)2 1+en* (6.13)

Jp+En*)2 d[j(lUp + A) - g(pp)]

Equation (6.12) has solutions with w $ 0 only if det (J - AI) = 0, which translates

to

H(A) = K(A), (6.14)

with

[ 2n* p* 1* p*

H(A) = A +-- + (1+ n*) 2 - [A + +d(p)]+ (1+ n*) 3 ' (6.15a)
S+ En* 1( + n*)

K(A) = A+ 2n* + P 2 - 1 d (p + A). (6.15b)

The roots of this "characteristic" equation are the eigenvalues; they are, in general,

complex numbers.

The real parts of the eigenvalues determine the stability of the equilibrium point.

If all of the eigenvalues have negative real parts, u and v will vanish in the limit

t -- oc, and the equilibrium point is therefore locally stable. If any eigenvalue has a

positive real part, the perturbations grow, and the equilibrium is unstable. Note that
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(6.14) and (6.15) together imply that A = 0 is not an eigenvalue since n* and p* are

positive.

In the absence of dispersal, d = 0. In this case, local stability of the equilibrium

point is guaranteed from (6.8) and (6.14) if

p 1 +Ep
< K < + (6.16)1 - Eli E(I - ECP)"

For finite r, if the left-hand inequality is violated the predator is extirpated, since for

this parameter range there is no positive steady state; see inequality (6.8). Violation

of the right-hand inequality results in a Hopf bifurcation and a predator-prey limit

cycle (Kot, 2001). Note that in the limit Kn -- oc, the equilibrium point is never

stable.

6.3 Results

6.3.1 Discrete travel time

If the duration of every dispersal event of every individual is exactly 7, then the dis-

persal delay distribution is a delta function: g(s) = 6 (s-r) and g(x) = exp(--rT). We

have been unable to analytically infer the local stability of the coexistence equilibrium

in this case, as the characteristic equation (6.14) is a transcendental equation with

infinitely many solutions. Therefore, we illustrate our results (in Fig. 6-1) using nu-

merically generated stability diagrams in the (7, d) parameter plane for various values

of r. For each combination of the parameters, we (i) calculated the equilibrium point

(6.6), (ii) for coexistence equilibria we chose a random initial condition for the prey

and the predator uniformly distributed between 50% and 150% of the equilibrium

values, (iii) using the Simulink package in Matlab, we simulated the model (6.5) and

discarded the transient dynamics. We then distinguished three sets in (T, d) parame-

ter plane: (a) a set of parameters for which the coexistence equilibrium does not exist

(because inequality (6.8) is violated), (b) a set for which the coexistence equilibrium

exists but it is unstable, and (c) a set for which the coexistence equilibrium is stable.

We start (Figure 6-1A) with a case that is stable in the absence of the disper-

sal delay (i. e., satisfying (6.16)). As expected, the coexistence equilibrium is stable

everywhere it exists. In Figures 6-1B-D the values of r, violate the right-most in-

equality in (6.16). For these values of the carrying capacity, the equilibrium point of
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Figure 6-1: Stability diagrams from simulations of model (6.5) with discrete dispersal
delay for various values of /, E = 0.01, p = pp = 1: A) K = 50; B) K = 150;
C) Q == 500; D) K = 5000. White areas designate a stable equilibrium point, dark
gray stands for an unstable equilibrium point and an area where there is no positive
coexistence equilibrium is shown in light gray, bounded by the black curve, i.e., the
case of equality (6.8).
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the Rosenzweig-MacArthur model (6.2) is unstable, surrounded by a predator-prey

cycle. Dispersal delay dampens the predator-prey oscillation resulting in the area of

stable equilibrium shown in white. For r, > 1000, the stability region reduces to four

"islands".

Since stability diagrams do not reveal the details of the unstable behavior, we

generated bifurcation diagrams for different values of parameters, for both predator

and prey densities. All diagrams exhibit qualitatively similar behavior, so we show

only one bifurcation diagram for prey density with T as the bifurcation parameter

(Fig. 6-2).

For each value of T we simulated model (6.5), discarded the transient dynamics,
and present only the final behavior by plotting only the local maxima and minima of

the trajectory. Stable equilibria therefore appear as a single point. Oscillations with

one peak appear as two points, and oscillations with two peaks appear as four points,
et cetera. Quasi-periodic and aperiodic oscillations appear as "smears."

In addition to quasi-periodic and aperiodic behavior, the bifurcation diagrams

also reveal the coexistence of multiple attractors. In Fig. 6-2A, we increased 7 from

0 to 7 in small steps, using the end of the simulation for one value of 7 as the

initial condition of the simulation for the following value of T. We followed the same

procedure in Fig. 6-2B, except that we decreased 7 from 7 to 0. For values of T in

the shaded regions of Fig. 6-2, solutions converge to different attractors depending

on initial conditions.

In Fig. 6-3 we categorize the dynamics of the Type II model,

it n- - (6.17a)
I + En'

p = - pp + d [ g(s) e-"'p(t - s) ds - p , (6.17b)1 + En [0fo
in the (T, d) parameter space over a range of E. In Fig. 6-3A, the predator's functional

response is strong (E is relatively large) and the equilibrium cannot be stabilized by

dispersal delays. As & decreases, however, stable islands grow in number and in size.

In the limit E --- 0, Neubert et al. (2002) showed the equilibrium is stable everywhere

except for a set of measure zero in the (T, d) plane. Comparing Fig. 6-3C with Fig. 6-

1D shows that the stability properties of the Type II model are essentially the same

as the Rosenzweig-MacArthur model with large carrying capacity.

The stability in the Type II model implies that dispersal delays can help resolve
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Figure 6-2: Bifurcation diagrams for the prey population density of model (6.5) with
discrete dispersal delay (minimum and maximum population densities), d = 35, e =
0.01, K• = 5000, p = pp = 1. A) T is changed forwards; B) T- is changed backwards.
Shaded regions depict the coexistence of multiple attractors. Detailed explanation in
the text.
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Figure 6-4: Bifurcations diagram for model (6.5) with , as bifurcation parameter show
that the amplitude of oscillation is significantly smaller in the presence of dispersal
delays; d = 35, e = 0.01, p = pp = 1. A) prey population, no dispersal (7 = 0); B)
prey population, 7 = 3; C) predator population, no dispersal (7 = 0); D) predator
population, T = 3.

the paradox of enrichment. In the MacArthur-Rosenzweig model without dispersal,

the amplitude of oscillation increases with increasing carrying capacity and the pop-

ulation soon reaches vanishingly small densities. We illustrate this with a bifurcation

diagram with , as a bifurcation parameter (Fig. 6-4A, C). We again present only the

long-term dynamics by plotting local minima and maxima of the trajectory. The min-

imal population density decreases rapidly with increasing r, and eventually becomes

dominated by numerical round-off errors, so the graphs in Fig. 6-4A and C appear

blurred. For comparison, in Fig. 6-4 B and D we show how the amplitude of the os-

cillation changes with increasing capacity in the presence of discrete dispersal delays.

In this case, large values of K give rise to quasi-periodic and aperiodic behavior, but

minimal population densities remain well above zero for both prey (Fig. 6-4B) and

predator (Fig. 6-4D).
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Figure 6-5: Shape of the Erlang distribution for increasing values of c. The mean
of each distribution is fixed at Ta, = 2; thus b = c/2 for each curve. Notice that
distribution of travel times is narrower for larger c.

6.3.2 Distributed travel time

When the movement abilities of the predators differ, or the vagaries of dispersal affect

individuals differently, individual travel-times form some distribution. For mathemat-

ical convenience we study a case where the delay distribution is an Erlang distribution

bC sC-e e-bs
g(s) = gb,c(s) = sc-I C bs (6.18)

(c - 1)!

with shape parameter c and scale parameter b (Fig. 6-5). For c = 1 the distribution is

exponential, and the dispersal model is equivalent to one that includes an explicit pool

of dispersers with constant per capita emigration and immigration rates, a la Weisser

& Hassell (1996) and Weisser et al. (1997). For c > 1 the mode of the distribution,

at (c - 1)/b, is positive. For large c, the mode approaches the mean, Tav = c/b, and

the distribution resembles a delta function.

For this special family of distributions, we can determine the local stability of the

equilibrium point (6.6) by linearizing system (6.5) and using the Laplace transform

be
((x) = +b,c( = . (6.19)
(II + b) C
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The characteristic equation (6.14) then reduces to a polynomial of degree c + 2:

[(A +p+ d)(Ap* - n*) + n*(1 - A)] b + pp )= d(Ap* - n*). (6.20)

To construct the stability diagrams in Fig. 6-6, we found the roots of equation (6.20)

numerically using the Matlab function roots ().

In Figs. 6-6A-C we show stability diagrams for increasing values of the shape

parameter c, with the other parameters fixed at levels that produce an unstable

equilibrium in the absence of dispersal delays.

The area in the parameter space where the equilibrium point is stable is largest for

c = 1 (Fig. 6-6A), implying that the stabilizing effect of dispersal delays is strongest

when individual travel times are exponentially distributed. As c increases, the sta-

bility region shrinks and its borders become more convoluted. The area of stability

remains large even in the limit as K -- oc (Fig. 6-6D). We expect that as c becomes

even larger the stability diagram would look even more like the discrete-delay case.

Unfortunately, for c much larger than 64, the characteristic polynomial (6.20) is ex-

tremely poorly conditioned, with coefficients differing in magnitude by hundreds of

orders; we have been unable to construct a stability diagram for these cases.

6.4 Discussion

We have shown that the coexistence equilibrium point of the single-patch Rosenzweig-

MacArthur model (6.2) can be stabilized when predator dispersal includes a dispersal

delay. Stabilization occurs because the dispersal delays introduce density dependence

into the dispersal process (Murdoch et al., 1992; Neubert et al., 2002). If the predator

population on the patch is abundant compared to earlier times, emigration from the

patch will exceed immigration, and the abundance on the patch decreases. If, on

the other hand, the current population on the patch is small, immigration will exceed

emigration, thereby increasing the population size. In this way, population oscillations

are reduced and species abundances eventually reach their equilibrium levels.

The stabilizing effect of a dispersal delay is strongest when the individual travel

times are exponentially distributed, as they are in models that include a pool of

dispersers. The stabilizing effect weakens as the delay distribution becomes more

concentrated around its mode. In the weakest case, when the delay distribution
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is a delta function and the carrying capacity is infinite, the stability region takes

the shape of an archipelago (Fig. 6-3B-D). The same structure, dubbed "islands of

amplitude death," has been observed in mathematical studies of coupled oscillators

(Reddy et al., 1998, 1999). These studies find that the amplitude of two coupled

limit-cycle oscillators can be "quenched" when the coupling is time delayed.

Dispersal delays are less effective at stabilizing the equilibrium as the carrying

capacity of the prey increases. Nevertheless, for a significant set of parameter values,

the model with dispersal delays has a stable coexistence equilibrium even for an

infinite carrying capacity (see Fig. 6-3 and Fig. 6-6D). Thus dispersal delays alone

are capable of inducing stability in the face of a destabilizing Type II functional

response.

Even when the equilibrium is unstable, the amplitude of the predator-prey oscil-

lation does not grow with increasing carrying capacity, and the minimum population

densities remain well above zero (Fig. 6-4B, and D). In this sense, our results can be

added to those of Jansen (1995) (see also de Roos et al., 1991; Scheffer & de Boer,

1995; Nisbet et al., 1998; Jansen & de Roos, 2000; Jansen, 2001) who also proposed

dispersal (without delay) as a potential resolution of the paradox of enrichment. The

stabilizing effect of dispersal in these studies is weaker than it is in our model, how-

ever, as it only produces a decrease in the amplitude of the limit cycle, rather than

stabilizing the equilibrium point.

Spatial structure is by no means the only factor that has been proposed to re-

solve the paradox (Abrams & Walters, 1996). Other factors include heterogeneity

within the prey population and complex food web structure. Enrichment of the prey

can reduce the amplitude of population cycles when prey have different profitability

(Genkai-Kato & Yamamura, 1999) or when a single predator attacks two prey species,
one of which is inedible (Kretzschmar et al., 1993). Enrichment can even lead to sta-

bility in systems that have a prey refuge (Abrams & Walters, 1996; Gurney & Veitch,
2000) or inducible defences in prey (Vos et al., 2004). Enhanced system persistence

and stability in intricate food webs has been attributed to weak trophic interactions

that dampen oscillations between consumers and resources and maintain population

densities further away from zero (McCann et al., 1998).

Our analysis has several limitations. We focussed on a single habitat patch from

which only predators dispersed. Using methods outlined Neubert et al. (2002), one

can show that if dispersal delays stabilize the single patch model they also stabilize a
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spatially homogeneous equilibrium of a model with an arbitrary number of identical

patches. Many real metapopulations, however, are composed of numerous patches

that differ in several attributes. In particular, the distance between two patches,

and therefore the distribution of dispersal delays between them, will not be the same

for all pairs of patches. Furthermore, both prey and predators may disperse. Our

analysis does not apply to these more complicated scenarios.

Finally, we note that our results may depend upon the exact way in which we

modeled the dispersal process. Another approach uses so called "patch occupancy

models," which keep track of the number of habitat patches that are in various states,

e. g., empty, or occupied by prey, or occupied by predators. In contrast to our results,

Sabelis et al. (1991) showed that while the addition of a pool of dispersing prey

was stabilizing in a simple patch occupancy model, dispersing predators could be

destabilizing. When it comes to the effects of dispersal on predator-prey dynamics,

the details of how dispersal is incorporated appear to be important.
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Chapter 7

Future directions: Matrix

population models for epidemics

and demography

7.1 Introduction

Infectious diseases often affect host individuals of different (st)ages in a different way.

For example, children aged 6-59 months, pregnant women, and persons aged 50 years

or more are at much higher risk for influenza-related complications and severe disease

than persons between ages 5 and 50. Different stages can have different susceptibility

to a disease also in the case of wildlife infections. In case of the phocine distemper

virus, different groups have different behavior, influencing their probability of getting

infected.

The demographic time-scale is usually very different from the epidemic time-scale,

so most models focus either on demographic or epidemic questions. But, in order to

know how recurring epidemics, or epidemics that have long infectious period, such

as HIV/AIDS, affect the population, the model should incorporate both realistic de-

mographic and epidemic detail. One way to incorporate age structure into epidemic

models has been by using integro-differential equations (e. g., Diekmann & Heester-

beek, 2000; Hethcote, 2000; Dietz & Heesterbeek, 2002; Thieme, 2003). Another way

is to use matrix models. Apart the applications in the analysis of age-prevalence data

(Saporu, 1990, 1996), and description of the contact and transmission processes (e. g.,
Pugliese, 1991; Keeling & Grenfell, 1997), the matrix approach hasn't commonly been
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used in epidemiology.

I want to construct a matrix model that accounts for both epidemic and demo-

graphic detail, and look at its dynamics.

7.2 Epidemic model with demography

To allow for demographic detail in each of the epidemic compartment I will follow the

approach formulated by Hunter & Caswell (2005) to model spatial matrix population

models. The authors constructed matrix models from a manageable block-diagonal

formulation of the dispersal and demographic processes, using a special permutation

matrix called a vec-permutation matrix.

Even though the spatial spread of infectious diseases is an important area of re-

search today, here I am not interested in spatial aspect of an epidemic. Instead, I want

to apply the vec-permutation approach to study epidemic processes in a demographic

setting.

Let the host population be divided into s stages and c epidemic categories. The

total number of population compartments is then s x c. The state of the epidemic in

the population at time t can then be described by the matrix

n11 n12 n1c

N(t)= 21 n22 n (t), (7.1)

n2l n.2 .. nsc

where nij (t) is the number of individuals in stage i and in epidemic category j at time

t. Row i (ni.), for example, has individuals of the same stage but in different epidemic

categories, where column j (n.j) gives individuals in the same epidemic category, but

in different stages. Forming a population vector by stacking the rows of this matrix,

will give us all the individuals in stage 1, followed by all the individuals in stage 2,

etc.

nstages = ( . (7.2)
T
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Accordingly, we can stack the population vector according to the epidemic categories,

n.1

nepidemic = ( (7.3)

The population vector n can be easily organized into epidemic or demographic

stages by the use of the vec operator, vec(-), that stacks the columns of a matrix on

top of each other,

nstages = vec(N T ), (7.4)

nepidemic = vec(N). (7.5)

The vectors (7.4) and (7.5) are related by a special matrix called the vec-permutation

matrix P so that

vec(N T ) = P vec(N). (7.6)

Since P is a permutation matrix, it holds that

pT = p- 1. (7.7)

Imagine a case where a population reproduces at the beginning of the projection

interval. As we want to keep track of both the demographic stages and epidemic

categories of the individuals, upon birth newly born individuals are assigned to their

epidemic compartments. An infection occurs at the end of the projection interval,

and let the matrix A[n(t)] describe the epidemic transitions that occur during this

outbreak. Let the matrix RI describe reproductive events, and the matrix M move the

newborn individuals to appropriate epidemic categories. Using the vec-permutation

configuration and a population vector organized into epidemic categories, we can

describe the transitions that occur in one projection interval by

S(t + 1) = PTA[n(t)] MPIR (t). (7.8)

Alternatively, an outbreak of infection may occur at the beginning of the projec-

tion interval, followed by the reproduction, and 'movement'. In this case, it is more
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convenient to organize the population according to its demographic compartments,

T T

(t + 1) = MP P T A[n(t)] (t). (7.9)

7.2.1 A (not so) simple example

To see how to formulate epidemic and demographic transition matrices, consider a

population that consists of only juveniles and adults - 2 demographic stages, s = 2.

Further assume that the disease that invades this population follows the standard

SIR-type dynamics, so at any given time an individual can be either susceptible (S),

infectious (I), or recovered (R) - 3 epidemic categories, c = 3. In this example, the

total number of compartments in the population is s x c = 6. The population matrix

can be described as

S I R

N = nil( 2 n13 juveniles (7.10)
n21 n22 n23 adults

Epidemic part

Let the transmission rate ( vary between groups, so that hij is the transmission rate

between a susceptible individual in demographic stage i and an infectious individual

in demographic stage j. The probability that a susceptible in stage 1 has no infectious

contacts with infectives in stage 1 during the time interval (t, t+ 1) is exp (-P/3n 12 (t))
Accordingly, the probability that a susceptible in stage 1 has no contacts with infec-

tives in stage 2 is exp (-0 12n22(t)). The total force of infection Al[n(t)] for stage 1

(juveniles) at time t is then

A [n(t)] = 1 - exp - i nj2 () (7.11)

After getting infected, a individual in stage i remains infectious for an average dura-

tion of 1/7i, after which it recovers with the probability ri. We can summarize the
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epidemic transition with the matrix A[n(t)]

' 1 - Al [n(t)] 0 0

Al[n(t)] 1 - i 0

0 riy1  1

0

0

1 - A [n(t)] 0 0

A2[n(t)] 1 - 72 0
0 r2o-v 1
0- n ' 1

and we can project the epidemic via

n(t + 1) = A[n(t)] n(t). (7.13)

When we don't account for the demographic detail, an outbreak of disease quickly

grows into an epidemic, and finally disappears from the population (see Figure 7-4).

Without the reproduction, there is no influx of susceptibles, so hosts are quickly

exhausted and the disease disappears from the population without the possibility of

reaching an endemic equilibrium.

Demographic part

The population at any time-step consists of juveniles (ni.) and adults (n2.) that can

either be susceptible (n.1), infectious (n.2), or recovered (n.3 ). Individuals in the

stage i and epidemic category j suffer mortality mi from natural, non-disease related

causes. Juveniles in the epidemic category i survive and grow to adults (in the same

epidemic category) with the probability gi. Adults in the epidemic category i have the

per-capita fertility fi, and they produce newborns that are temporarily in three new

demographic stages, n3. (see Figure 7-2 for an illustration). The temporary stage

n31 consists of newborns produced by susceptibles, n32 are newborns produced by

infecteds, and recovered individuals give birth to n33.

If we summarize the transitions of epidemic category i with the matrix Ri,

(1 - gi)(1 - mi) 0

Ri = gi(1 - mi) 1 - m 2i (7.14)

0s f

The reproduction, survival, and growth can be written using the block-diagonal form
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Figure 7-1: Dynamic of the epidemic in a structured population without demography.
Parameter values: /3ij = 0.005, 1 = 'Y2 = 1/14, rl = r2 = 0.5, initial conditions:

nstages = (100 0 0 50 1 0 )T

susceptibles infectives recovered

Figure 7-2: Reproduction matrix 1R accounts for the reproduction, survival and
growth. New individuals temporarily show up in extra states (n3.) before they are
assigned to their epidemic categories.
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newborns

In2I n2 2  n23

n21 n22

vertical inherited
transmission (v) immunity (h)

Figure 7-3: After reproduction, newborn individuals are assigned to their epidemic
categories by the matrix M. If there is no vertical transmission or inherited immunity

(v = 0, h = 0) then all newborn individuals will be susceptible.

as
nil

n21

n 31

n 12

n22

n32

n13

n23

\ n 33

where R is a 9 x 6 matrix that

elsewhere.

R1 0 0
0 R2 0

0 0 R3

R

consists of 3 x 2 blocks Ri on the diagonal and zeros

Newly born individuals do not have to be in the same epidemic category category

as their parents. If there is no vertical transmission of a disease, new individuals born

to infectious parents will be susceptible. In case that newborns don't have maternal

antibodies (i. e., inherited immunity) against an infection, even though they are born

to immune (recovered) parents, they will be susceptible. Figure 7-3 summarizes those

possibilities.

Assignment of newborn individuals to epidemic categories can be summarized by

the 'movement' matrix M and the following equation.
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population projection interval

Figure 7-4: Without the
Parameter values: gi =

nepidemic = ( 100 50 0

ni1

n12

n13

n21

n22

n223

epidemic, the structured population grows exponentially.
0.3, mi. = 0.2, m2. = 0.1, fi = 0.3, initial conditions:
0 0 0) T

1-v 1-h

v 0

0 h

0

1 0 0

0 1 0

0 0 1

nil

n.,

n13

n31

n32

n33

n21

n22

n23

(7.16)

In the absence of infections, the dynamics of the population is given by

n(t + 1) = PT M P 9 R n(t) (7.17)

where P6 and P9 are permutation matrices described in (7.6). Without the epidemic,

the population grows exponentially, without any infectious individuals. The pop-

ulation growth rate is given by the dominant eigenvalue A1 of the square matrix
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Figure 7-5: Endemic equilibrium of model (7.18) that includes both demographic
and epidemic detail. Parameter values: gi = 0.3, mi. = 0.2, m2. = 0.1, f. = 0.3,
fOj = 0.005, yi = 'Y2 = 1/14, ri = r2 = 0.5, h = 0, v = 0, initial conditions:

nepidemic = ( 50 50 1 0 0 0 0 )

I 6 = P MP 9 R.

Model with demography and epidemics

Combining demographic and epidemic detail can be done in several ways. For exam-

ple, the reproduction can be followed by an outbreak of a disease as in (7.8), or there

can be an outbreak at the beginning of the population projection interval, followed

by the reproduction as in (7.9).

Consider a case where an epidemic occurs at the end of the population projection
interval.

n(t + 1) = PT A[n(t + kAt)] ... A[n(t + At)]A[n(t)] MP 9 R n(t) (7.18)

The epidemic introduces nonlinearity into the model that brings this, otherwise
exponentially growing, population to an equilibrium. The demographic part, on the
other hand, introduces an influx of susceptibles into the population, which allows
the disease to become endemic. Combining a standard SIR dynamic with simple
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demographic model allows a new type of behavior - endemic equilibrium - which was

not possible in models (7.13) and (7.17).

7.3 Future analyses

Combining epidemic and demographic detail into a single model, gives rise to the

dynamics not present in the building blocks of this model. In the future I want to

explore the dynamics of this model in more detail and look at the endemic equilibria

and the stability of this system. What epidemic and what demographic parameters

can drive this system to instability? I'm interested to see under what conditions can

a disease persist in this model, and what factors lead to disease extinction.
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Appendix A

Proof that system (5.19) has no

real solution

To rule out imaginary roots for the characteristic equation (5.14) we prove that system

(5.19) has no real solution. To complete the proof we use a theorem by Hardy et al.

(1952). To use the this theorem we first need the following definitions.

Definition 1 Max f, the 'effective upper bound' of f, is defined to be the largest J

which has the following property: if e > 0, there is a set e(E) of positive measure in

which f > I- e. If there is no such (, we write Maxf = oc. For functions continuous

on a closed interval, Max f is the ordinary maximum.

Definition 2 The mean of f with respect to the weight function ¢ on a measurable

set E is defined as

(f) - fE (s) f (s) ds (Al)
fE (s) ds

With these definitions, we can now state the theorem.

Theorem 1 (Hardy et al. 1952, Theorem 183) Let the measurable function f

be finite almost everywhere on a measurable set E and non-negative. Let the measur-

able function q be finite and positive everywhere in E, and integrable over E. Then,
if U (f) is finite and positive,

U(f) < Max f, (A2)

unless f = C (C a constant) almost everywhere.

We now prove the following lemma.
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Lemma 1 If dp, pu, n* and p* are positive, pp is nonnegative, and the probability

density function gp(s) is finite and has support on a measurable set, then system

(5.19) has no real solution y.

Proof. One solution of equation (5.19b) is y = 0. But y = 0 is not a solution of

(5.19a), so y Z 0. Dividing equation (5.19b) by dpypg,(p) gives

fo" gp(s) e-ps cos(ys) ds= 0, (A3)fo gp(s) e-ips ds

which implies
fo gp(s) e-ps cos(ys) ds

0>1. (A4)fo gp(s) e-Lps ds

But Theorem 1, with 4(s) = gp(s)e-PP", f(s) = I cos(ys)1, E = {s > 0: gp(s) > 0}

and y • 0, implies that the left hand side of equation (A4) is less than one. Thus

system (5.19) does not have a solution. Il
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