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Abstract

Stage-structured epidemic models provide a way to connect the interact-

ing processes of infection and demography. Reproduction and development

can replenish the pool of susceptible hosts, and demographic structure leads

to heterogeneous transmission and disease risk. Epidemics, in turn, can in-

crease mortality or reduce fertility of the host population. Here we present

a framework that integrates both demography and epidemiology in models

for stage-structured epidemics. We use the vec-permutation matrix approach

to classify individuals jointly by their demographic stageand infection sta-

tus. We describe demographic and epidemic processes as alternating in time

with a periodic matrix models. The application of matrix calculus to this

framework allows for the calculation ofR0 and sensitivity analysis.
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1 Introduction

The basic epidemic models classify individuals on the basisof their infection sta-

tus (susceptible, infected, recovered, immune, etc.), anddetermine the dynamics

of the epidemic on the basis of the rates of individual movement among these

infection states (Anderson & May 1991). Individuals also and obviously differ

in demographic characteristics (age, maturity, size, reproductive status, etc.). De-

mographic models describe the rates of individual movementamong these stages,

and the resulting population dynamics. These two kinds of movement are not

independent; rates of survival, reproduction, and growth may be influenced by

infection status, and rates of disease transmission, infection, and recovery may

differ among demographic stages. Models for stage-classified epidemics provide

a way to study the interaction between epidemic and demographic processes.

Stage-structured epidemic models face several challenges. They must classify

individuals by two criteria, and keep track of the densitiesof all possible combi-

nations of infection status and demographic stage. They must also recognise the

frequent difference between demographic and epidemic time-scales. An individ-

ual that lives for many decades may experience many bouts of infection lasting a

few weeks; sometimes disease outbreaks are highly seasonaland restricted to part

of the year, while demographic processes may take place overmany years.

There is a sizable literature on various aspects of the special case of age struc-

ture (e.g. Castillo-Chavezet al. 1989; Busenberg & Hadeler 1990; Diekmann

& Heesterbeek 2000; Hethcote 2000; Dietz & Heesterbeek 2002; Thieme 2003).

However, especially in studies of plant and animal diseases, age may be inade-

quate as the state that characterises individuals (known asani-state variable), and

the infection process may depend more on physiological or behavioural stages

than on age per se. Age, however, is a special case of stage, sothe stage-structured

epidemic includes age-classified as well as stage-classified models.
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Our stage-structured epidemic models classify individuals jointly by infec-

tion status and demographic stage, and include transitionson the short time scale

of epidemic processes in a model in which demographic processes operate over

longer time scales. The key to our formulation is the joint classification of in-

dividuals. We use the approach introduced by Hunter & Caswell (2005); it was

originally used to develop models classifying individualsby stage and spatial lo-

cation, and has since been extended to consider stage and age, or stage and envi-

ronmental states (Caswell 2009b). We combine this approachwith the model for

stage-structured disease transmission in Klepacet al. (2009).

Constructing a stage-classified epidemic model begins witha set of matrices

that describe demographic processes, including the production of new individuals

by reproduction and the roles (if any) of vertical transmission and inherited immu-

nity. Then another set of matrices describe the infection dynamics, as a function

of stage-specific transmission rates. Model development isfacilitated by using the

vec-permutation matrix to rearrange demographic stages and infection categories

so that the matrices can be written in block diagonal form (Hunter & Caswell

2005).

The result of this construction is a nonlinear matrix population model. Be-

cause demographic and epidemic processes alternate withina year, and do so

repeatedly from year to year, the model is a periodic matrix model (Caswell 2001,

Chapter 13). We will focus here on the asymptotic dynamics, particularly the pos-

sibility of endemic equilibrium, and on the calculation of the basic reproduction

numberR0. We will also use recent developments in perturbation analysis of non-

linear matrix population models to study the sensitivity ofequilibria to changes in

parameters.

Notation. We use lower case bold symbols (e.g.,n) for vectors and upper case

(N) for matrices. Our model will include many block-structured matrices, which

3



we denote as, e.g.,N. Where convenient, we use MATLAB notation, whereN(i, :)

andN(:, j) refer to rowi and columnj of N, respectively. We use subscripts when

necessary to indicate the size of matrices or vectors; e.g.,I s is an identity matrix

of orders. We use 111s to denote as×1 vector of ones, andej,s to denote thejth

unit vector of lengths (i.e., columnj of I s). The transpose ofN is denoted byNT,

the Kronecker product is⊗, and the vec operator vec(N) stacks the columns of a

matrix one above the next.

2 Model development

We classify individuals intos stages andc infection states. As an example, we

will develop the model fors = 2 stages (juveniles and adults) andc = 3 infection

categories (susceptible, infected, and recovered), but the generalisation to more

stages or more infection categories should be obvious.

The state of the population at timet is given by thes× c array

N(t) =









n11 · · · n1c
...

...

ns1 · · · nsc









(1)

The arrayN(t) can be transformed into a vector suitable for population projection

in two ways (Hunter and Caswell 2005), using the vec operator,

n = vec(N) =









N(:,1)
...

N(:,c)









(2)

m = vec(NT) =









N(1, :)T

...

N(s, :)T









(3)
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The first of these stacks the columns ofN one above the other, grouping stages

together within infection categories. The second stacks the transposed rows ofN

one above the other, grouping infection categories within demographic stages.

At times during the annual cycle, the number of stages or infection states may

change. In our example, reproduction will temporarily produce an extra stage of

newborn individuals; the corresponding population vectorhas length(s+1)c and

we will denote it byn′.

The two population vectors are related by

vec(NT) = K s,cvec(N) (4)

where the matrixK s,c is called thevec-permutation matrix (Henderson & Searle,

1979, 1981) or the commutation matrix (Magnus & Neudecker, 1985). It is given

by

K s,c =
s

∑
i=1

c

∑
j=1

Ei j ⊗ET

i j (5)

whereEi j is ans× c matrix with 1 in the(i, j) position and zeros elsewhere, and

⊗ is the Kronecker matrix product. SinceK is a permutation matrix,K T = K−1.

2.1 Demographic dynamics

The population at any time-step consists of juveniles and adults that can either be

susceptible, infectious, or recovered. Individuals in thestagei and epidemic cate-

gory j suffer mortalitymi j from natural, non-disease related causes. Juveniles in

the epidemic categoryi survive and grow to adults (in the same epidemic category)

with the probabilitygi. Adults in the epidemic categoryi have the per-capita fertil-

ity fi, and they produce newborns that are temporarily in three newdemographic

stages (see Figure 1 for an illustration). These offspring are distinguished from

extant juveniles in order to account for infection status due to maternal immunity
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or vertical transmission. The demographic rates (survival, growth, reproduction)

defined by Figure 1 are specified within infection categoryi by a matrixRi, of

dimension((s+1)× s)

Ri =









(1−gi)(1−m1i) 0

gi(1−m1i) 1−m2i

0 fi









i = 1, . . . ,c (6)

In general, the firsts rows of the matrixRi give the survival and transition

of individuals among thes demographic stages. The entries in rows + 1 are the

fertilities of each of the stages.

The demographic transitions for the whole population are given by

n′(t) =









R1
. . .

Rc









n(t) (7)

= Rn(t) (8)

whereR is a block-diagonal matrix containing theRi, andn′ is a vector of length

(s+1)c.

2.2 Parental effects

The infection status of newborn individuals may be influenced by that of their

parents, due to inherited immunity, vertical transmissionof infection, or perhaps

vaccination programs targeted at newborns. To account for these effects, and to

allocate newborn offspring to the appropriate infection status, we define

v = proportion of offspring of infected parents that are infected

h = proportion of offspring of recovered parents that are immune

ω = proportion of offspring of susceptible parents that are immune
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In terms of these parameters, we define a matrixG,

G =









1−ω 1− v 1−h

0 v 0

ω 0 h









(9)

that allocates new offspring to the appropriate infection stages in the juvenile stage

(Figure 2). We useG to update the population vector,

n =

(

I c 000 G

000 I c 000

)

K s+1,cn′ (10)

= MK s+1,cn′, (11)

whereM =

(

I c 000 G

000 I c 000

)

.

2.3 Disease dynamics

After accounting for survival, growth, and reproduction, we describe disease dy-

namics by a discrete-time SIR model specific to each demographic stage. By writ-

ing the population vector asm = vec(NT), we can use a block diagonal matrix to

describe the dynamics,

m =









A1[m]
. . .

As[m]









m(t) (12)

= A[m] m (13)

The matrixAi describes transitions among infection states

Ai =









1−Λi [m] 0 0

Λi [m] 1− γi 0

0 riγi 1









(14)
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In (14), Λi[m] is the probability of infection in stagei (equivalent to instanta-

neous force of infection in continuous time models, or per capita rate at which

susceptibles acquire infection) and depends on the entire vectorm = vec(NT).

The functionΛ[·] depends on the type of transmission (e.g., Diekmann & Heester-

beek 2000; Begonet al. 2002; Brauer 2006). We describe this dependence with a

matrixβββ of transition rates (the ‘who acquires infection from whom’, or WAIFW

matrix (Schenzle 1984; Anderson & May 1985; Anderson & May 1991; Dob-

son 2004)). The elementβi j is the transmission rate from infected individuals in

stagej to susceptible individuals in stagei. The parameterri is the probability of

recovering from infection;(1− ri) is the probability of dying if infected.

For density-dependent transmission, usually appropriatefor airborne diseases,

the number of contacts is related to host density and the force of infection in stage

i depends on the total number of infectious individuals.

Λi(m) = 1−exp(−β (i, :)N(:,2)) (15)

= 1−exp
[

−eT

i,s (βββ ⊗e2,s)m
]

(16)

Frequency-dependent, or proportional mixing, transmission assumes a fixed

number of contacts over the time-interval; and the infection probability for stagei

depends on the proportion of infectious cases in the total population,

Λi(m) = 1−exp

[

−eT

i,s (βββ ⊗e2,s)m

111T

scm

]

(17)

where the denominator 111T

scm is total population size.

2.4 The stage-structured epidemic model

To obtain a model for the stage-structured epidemic that includes all these pro-

cesses, we form the periodic matrix product ofR, M, and A, using the vec-
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permutation matrixK to re-order the stages as necessary:

n(t +1) = K T

s,c A[m] M K s+1,c R n(t) (18)

= B[n(t)] n(t) (19)

wherem = MK s+1,cRn(t) is the population just prior to the epidemic. Working

from right to left, the model first accounts for demographic transitions and repro-

duction, then for parental effects on new offspring, and finally for transmission,

infection, and recovery. The demographic dynamics includethe effects of infec-

tion status (through theRi) and the disease dynamics include demographic effects

(through theAi).

Note that the projection fromt to t + 1 (say, from one year to the next) is

described by a sequence of matrices on shorter, intra-annual time scale, and that

the sequence is repeated to project fromt +1 to t +2, and so on. Thus (18) is a

periodic matrix model (Caswell 2001, Chapter 13). Such models can be analysed

on both the interannual time scale, as in (19), or investigated on a finer scale using

(18). The time-scale issue mentioned in the Introduction suggests that it may be

desirable to change the ratio of demographic and epidemic transitions; we return

to models with two time scales in Section 5.

3 R0 for the stage-structured epidemic

The occurrence of a disease outbreak depends on what happensupon introduction

of an infection into an otherwise uninfected population. The reproductive number

R0 gives the expected number of new infections produced by a single infected

individual in a completely susceptible population (Dietz 1975; Diekmannet al.

1990; Anderson & May 1991). IfR0 > 1 the infection spreads and results in an

epidemic; ifR0 < 1 the infection dies out.

In the simplest models,R0 is the product of the rate of production of new
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infections and the average duration of the infectious state. When there are multiple

infectious stages,R0 is the dominant eigenvalue of the next-generation matrix,

given byF(I −U)−1 whereF is a matrix of rates of production of new infections

andU is the matrix of transition rates among the infectious stages (cf. Cushing and

Yicang 1994; van den Driessche & Watmough 2002; Allen & van den Driessche

2008).

In the stage-structured epidemic, which may include multiple infected classes

and multiple demographic stages,R0 can be derived from an explicit invasion

calculation.

The population dynamics are given by the nonlinear system (18). For ease of

derivation, we write the susceptible, infected, and recovered components ofn as

n =









nS

nI

nR









. (20)

The attempted invasion of the infection takes place at a specified disease-free pop-

ulation

n̂ =









n̂S

0

0









. (21)

Often, n̂ will be an equilibrium, but it could be some other populationvector of

interest. In a stage-structured epidemic, population sizemay be changing over

time, andR0 may change with population size and structure.

To computeR0, we rewrite (18) as








nS

nI

nR









(t +1) =









X(n) Y(n) Z(n)

















nS

nI

nR









(t), (22)

where the empty cells in the matrix contain expressions thatare not used in this
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calculation. Following Allen & van den Driessche (2008), wefocus on the dy-

namics ofnI, which are given by

nI(t +1) = Y[n] nI(t)+X[n] nS +Z[n] nR. (23)

The occurrence of an outbreak depends on the invasion exponent, which is the

long-term growth rate of the linearisation of (23) nearn̂, with nS andnR fixed at

valuesn̂S andn̂R, respectively. This linearization is given by

J =
dnI(t +1)

dnI(t)

∣

∣

∣

∣

n̂
(24)

(Verdy & Caswell 2008). Note that the invasion of the infection could be deter-

mined directly from the dominant eigenvalueλ of J; the invasion will be suc-

cessful if and only if|λ | > 1. However, it is customary in epidemiology to study

the invasion in terms ofR0. See Wallinga & Lipsitch (2007) for a relationship

betweenλ andR0. Differentiating (23) gives

dnI(t +1) = (dY)nI(t)+YdnI(t)+(dX)n̂S(t)+(dZ)n̂R(t)

= (nT

I (t)⊗ I)dvecY +YdnI(t)

+(n̂T

S(t)⊗ I)dvecX +(n̂T

R ⊗ I)dvecZ. (25)

Evaluating at̂n gives the Jacobian

J = Y[n̂]+(n̂S ⊗ I)
dvecX

dnT

I
+(n̂R ⊗ I)

dvecZ
dnT

I
(26)

where all derivatives are evaluated atn̂.

The matrix derivativesdvecX/dnT

I anddvecZ/dnT

I are obtained fromB using

the same approach that we describe below in Section 4.1 to differentiate with

respect to parameters.

To obtain the next-generation matrix, we must decomposeJ into transitions of

extant infected individuals and the production of new infections.

J = F+U (27)
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whereU contains transitions of extant individuals andF the production of new

individuals. Since infections reproduce themselves only by transmission, we can

calculateU by setting transmission rates to zero and evaluating

U = J|β=0 . (28)

ThenF = J−U and the reproductive number is

R0 = maxeig
(

F(I −U)−1
)

. (29)

4 Dynamics of the stage-structured epidemic

In the absence of the disease, the infection matrixA disappears from (18), leading

to a linear model with projection matrix

B = K T

s,cMK s+1,cR (30)

and the population will eventually grow exponentially at a rate given by the dom-

inant eigenvalue ofB. Note thatB may be reducible, because susceptible and

recovered stages do not communicate in the absence of infection, but the eigen-

values ofB still determine population growth. If the demography were density-

dependent, then the disease-free dynamics would be nonlinear, and might include

equilibria, cycles, invariant loops, or strange attractors. We do not consider these

possibilities further.

The dynamics in the presence of the disease depend, in a complicated way, on

the interaction between the infection dynamics and the effects of infection on the

demographic rates. If the population grows to the point whereR0 > 1, so that the

disease can persist, and if infection reduces survival and reproduction sufficiently,

our simulations show that it is possible for the disease to become endemic and

regulate the population to a stable equilibrium.
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If an equilibrium exists on the annual time scale is a 2-cycleon the intra-annual

time scale. The population oscillates between a staten̂1 just before the epidemic

and a statên2 just after the epidemic. These vectors satisfy

n̂1 = K T

s,c M K s+1,c R n̂2 (31)

n̂2 = K T

s,c A[K s,c n̂1] K s,c n̂1. (32)

4.1 Perturbation analysis of the endemic equilibrium

The intra-annual cycle defined byn̂1 andn̂2 is determined by the parameters defin-

ing the demographic rates, the maternal influences, and the processes of disease

transmission and recovery. Changes in these parameters will changen̂1 and n̂2.

Perturbation analysis gives the sensitivity and elasticity of n̂1 andn̂2 to the param-

eters, which may be valuable in the design of public health interventions or in the

interpretation of natural changes in parameters.

It is obvious from the construction of the stage-structuredepidemic model

that the effects of parameters onn̂1 and n̂2 can be very complicated. However,

methods based on matrix calculus (Magnus & Neudecker 1988) make the calcu-

lations possible. This approach has recently been applied in ecological contexts

by Caswell (2006; 2007; 2008; 2009a; 2009b; Verdy & Caswell 2008). In partic-

ular, we rely on methods given in Caswell (2008, Section 8). Ashort description

of these methods is given in Appendix A.

Let θθθ be a vector of parameters, of dimensionp×1. Then the sensitivity of

the equilibrium cycle is given by the derivatives of elements in n̂1 and n̂2 with

respect to all parameters inθθθ ; i.e., by

dn̂i

dθθθ T
i = 1,2. (33)

Each of these derivatives is a matrix, of dimensionsc× p, whose(i, j) entry is the

partial derivative of theith entry inn̂i with respect to thejth entry ofθθθ .
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To begin the calculation, we rewrite the 2-cycle in (31) and (32) as

n̂1 = Vn̂2 (34)

n̂2 = W[n̂1]n̂1. (35)

To find the sensitivity of the 2-cycle we differentiate (31) and (32), and apply

the vec operator, the chain rule, and the first identificationtheorem (Magnus &

Neudecker 1985) to obtain

dn̂1

dθθθ T
= (n̂T

2⊗ I sc)
dvecV

dθθθ T
+V

dn̂2

dθθθ T
(36a)

dn̂2

dθθθ T
= (n̂T

1⊗ I sc)
∂vecW

∂θθθ T
+(n̂T

1⊗ I sc)
∂vecW

∂ n̂T

1

dn̂1

dθθθT
+W

dn̂1

dθθθ T
(36b)

with all derivatives evaluated at(n̂1, n̂2). The calculation of the derivatives ofV

andW is described in Appendix B.

We rewrite the system in block-matrix form as

d
dθθθ T

(

n̂1

n̂2

)

=

(

0 (n̂T

2⊗ I)

(n̂T

1⊗ I) 0

)









∂vecW
∂θθθ T

dvecV
dθθθ T









+







(

0 (n̂T

2⊗ I)

(n̂T

1⊗ I) 0

)







0
∂W

∂ n̂T

1

0 0






+

(

0 V

W 0

)







d
dθθθ T

(

n̂1

n̂2

)

.

(37)

To solve for the derivatives in (37), we define the following block matrices

N =

(

n̂1

n̂2

)

(38)

F =

(

0 V

W[n̂1] 0

)

(39)
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H =

(

0 (n̂T

2⊗ I)

(n̂T

1⊗ I) 0

)

(40)

C =





0
∂vecW

∂ n̂1

0 0



 (41)

D =









∂W[n̂1]

∂θθθ T

∂V

∂θθθ T









. (42)

In terms of these matrices, (37) becomes

dN

dθθθ T
= HD+[HC+F]

dN

dθθθT
(43)

which can be solved for the sensitivities ofn̂1 andn̂2 as in Caswell (2008), to give

dN

dθθθ T
= (I2sc −HC−F)−1

HD. (44)

4.2 Sensitivity of stage-specific prevalence

The sensitivities of̂n1 and n̂2 given in (44) can be extended to examine the ef-

fects of parameters on stage-specific prevalence of the disease. At either of thêni

(i.e., either just before or just after the epidemic), we candefine the equilibrium

prevalence as

P̂ =
aTn̂
bTn̂

(45)

wherea andb are vectors that depend on the classes being considered. Thetotal

prevalencePtot (total infected over total population size) is obtained by setting

a = e2,c ⊗111s (46)

b = 111sc. (47)
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The stage-specific prevalenceP̂j (infected in stagej over population in stagej) is

obtained by setting

a = e2,c ⊗ej,s (48)

b = 111c ⊗ej,s. (49)

These prevalence measures are examples of ratios of weighted sums. In either

case, the sensitivity of̂P is given by (Caswell 2008)

dP̂
dθθθ T

=

(

bTn̂aT −aTn̂bT

(bTn̂)2

)

dn̂
dθθθ T

. (50)

4.3 Elasticities of the equilibrium and prevalence

The calculation of calculation of elasticities, or proportional sensitivities, is de-

scribed in Appendix A. The elasticities of the endemic equilibrium and equilib-

rium prevalence are given by

εN

εθθθ T
= diag(N)−1 dN

dθθθ T
diag(θθθ) (51)

εP̂
εθθθ T

=
1

P̂

dP̂
dθθθT

diag(θθθ ). (52)

4.4 An example of the one time scale model

As a numerical example of the stage-structured epidemic with one time scale (18),

we develop a SIR-type model (c = 3 epidemic categories) with a single episode

of disease transmission each year in a population withs = 2 stages (juveniles and

adults), for a potentially fatal disease with a long infectious period. We describe

the contact process with two parameters; contact within stages (β1) and contact

between juveniles and adults (β2), and we assume thatβ1 > β2). This stage-
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Table 1: Parameters for the one and two time-scale models (subscriptss, i,r denote

infection states,j,a denote demographic stages).

One time scale model Two time scale model

parameter value parameter value

gs = gr 0.4 gs = gr 0.4

gi 0.3 gi 0.3

m(s)
j = m(i)

j = m(r)
j 0.1 m(s)

j = m(i)
j = m(r)

j 0.1

m(s)
a = m(i)

a = m(r)
a 0.2 m(s)

a = m(i)
a = m(r)

a 0.2

fs = fr 0.3 fs = fr 0.3

fi 0.2 fi 0.2

β11 = β22 0.0036 β11
k+1 = β22

k+1 3.564·10−3

β12 = β21 0.0014 β12
k+1 = β21

k+1 1.386·10−3

r j 0.6 r
( 1

k+1)

j 0.9950

ra 0.7 r
( 1

k+1)
a 0.9965

γ−1
j = γ−1

a 10 γ
k+1 0.099
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specific mixing pattern is captured with the WAIFW matrix,

βββ =

(

β1 β2

β2 β1

)

. (53)

We assume density-dependent transmission (16). We assume that on average in-

dividuals stay infected for 10 years (γi = 1/10), after which they either recover

with life-long immunity (with probabilityri), or die (with probability 1− ri).

The demographic part of the model includes all mortality notdirectly resulting

from the disease. This mortality may depend on infection status, because infected

individuals may be more susceptible to other diseases, or easier targets for preda-

tors. We assume no parental effects (maternal immunity, vertical transmission).

Parameter values for the single time scale model are given inTable 1, and

the full matrices are given in Appendix C. With these parameters, the population

grows exponentially in the absence of the disease at the rateλ = 1.023. Infection

introduces nonlinearity to the model that brings the population to an equilibrium.

In this exampleR0 = 2, at an initial disease-free population of

n =
(

100 100 0 0 0 0
)

T

(54)

and the convergence to the endemic equilibrium is shown in Figure 3. The equi-

librium population is

N =

(

56.22 7.72 0.63

63.94 33.31 11.20

)

(55)

The equilibrium prevalence in the entire population isP̂tot = 0.24. The stage-

specific prevalences arêP1 = 0.12 andP̂2 = 0.31.

The sensitivity of the equilibrium population just before the outbreak (̂n1) to

the parameters, calculated according to (44), is shown in Figure 4a. An increase in

transmission parameters (elements ofβββ ) decreases the abundance of most stages
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due to increased outbreak intensity. Increase in juvenile transmission increases the

level of juvenile infecteds but also of juvenile immune class through the process

of recovery. Increases in stage-specific transmission leadto increased prevalence

in that stage (Figure 4b). The importance of demographic parameters, especially

the fertilities, on the equilibrium levels and prevalence becomes apparent when

we look at the elasticities in Figure 5.

5 A model with epidemic and demographic time scales

In the stage-structured epidemic model (18), each year contains a single episode

of demographic change and a single episode of epidemic change. However, many

pathogens exhibit outbreaks on short time scales, on the order of days or weeks,

rather than years. In such cases, a stage-structured epidemic model with a single

time scale will either lose the details of the epidemic process, or describe the

demography on an inappropriately short time scale. Our solution to this dilemma

is to explicitly include two time scales in the model.1

To examine the infection process on a shorter time scale, we replace the matrix

A[m] in (18) with the product of a set ofk +1 matrices

A[m(t + k∆)] · · ·A[m(t +∆)] A[m(t)] (56)

where∆ < 1 is the time step on which the detailed trajectory of the outbreak is

modelled. The resulting stage-structured epidemic is then

n(t +1) = K T

s,c

{

A[m(t + k∆)] · · ·A[m(t +∆)]A[m(t)]
}

M K s+1,c R n(t). (57)

1We note that our approach to the stage-structured epidemic has great flexibility in specifying

time scales and seasonal variation. One could include multiple, alternating matrices corresponding

to seasonal patterns of demographic and infection processes. The analysis of these models, using

block matrices and the vec-permutation matrix, would follow the same sequence shown in the

examples here.
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The disease transition matricesA[·] depend on the population vectorm at inter-

mediate times betweent andt +1, given by

m(t + i∆) =

{

MK s+1,c Rn(t) if i = 0

A [m(t +(i−1)∆)] m(t +(i−1)∆) if i = 1, . . . ,k.
(58)

5.1 An example of the two time-scale model

In the model with two time scales, we scale the parameters so that the disease

process gets the same amount of time as in the one time-scale example, but that

time is divided up into finer intervals, to see more of the details of the infection

process. This change in time scale changes the model from 1 tok + 1 iterations

of the epidemic transitions per population projection interval. Since we are now

sampling the same time intervalk +1 times, the duration of the infection, orγ−1,

now becomes(k+1)γ−1, the survival probability in the finer interval is nowr( 1
k+1).

The probability of escaping the infection during thek + 1 steps is(1−Λ), so

the probability of escaping the infection during the one of the finer steps is(1−

Λ)(
1

k+1) which requiresβββ → βββ
k+1.

To explore this model, we modified the example in Section 4.4 by including

101 epidemic iterations (i.e.,k = 100), and rescaled parameters for a two time-

scale model according to Table 1. We set initial conditions to

n(0) =
(

100 100 1 0 0 0
)

T

. (59)

Viewed on the annual time scale, the population converges toan equilibrium reg-

ulated by the disease (Figure 6). The equilibrium population is

N̂ =

(

60.84 18.29 3.15

50.27 57.38 32.15

)

(60)

As expected the dynamics are qualitatively similar (but notidentical, because of

nonlinearitites) to those in Figure 3. On the intra-annual time scale, the oscillatory
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dynamics are apparent (Figure 6). The solution on the intra-annual time scale is a

cycle of periodk +2, satisfying

n̂1 = K T

s,c MK s+1,c R n̂k+2

n̂2 = K T

s,cA [K s,cn̂1]K s,c n̂1

... (61)

n̂k+2 = K T

s,cA [K s,cn̂k+1]K s,c n̂k+1

The total prevalence at the annual equilibrium isP̂tot = 0.34. Stage specific

prevalences arêP1 = 0.14 andP̂2 = 0.36.

To calculate the sensitivity of the cycle, we rewrite (61) as

n̂1 = Vn̂k+2

n̂2 = W[n̂1]n̂1
... (62)

n̂k+2 = W[n̂k+1]n̂k+1

The sensitivity of thisk-cycle is an extension of the analysis for the 2-cycle (see

Caswell 2008, Section 8.1). Differentiating gives

dn̂1

dθθθ T
=

(

n̂T

k+2⊗ I sc
) dvecV

dθθθ T
+V

dn̂k+2

dθθθ T
(63a)

dn̂2

dθθθ T
= (n̂T

1⊗ I sc)
∂vecW[n̂1]

∂θθθ T
+(n̂T

1⊗ I sc)
∂vecW[n̂1]

∂ n̂T

1
+W[n̂1]

dn̂1

dθθθT
(63b)

...
dn̂k+2

dθθθ T
=

(

n̂T

k+1⊗ I sc
) ∂vecW[n̂k+1]

∂θθθ T
+
(

n̂T

k+1⊗ I sc
) ∂vecW[n̂k+1]

∂ n̂T

k+1
+W[n̂k+1]

dn̂k+1

dθθθT

(63c)

with all matrices and derivatives evaluated at(n̂1, . . . , n̂k+2). To simplify and solve
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for the derivatives of thêni, define the following block matrices:

H =















0
(

n̂T

k+2⊗ I sc
)

(n̂T

1⊗ I sc) 000
...

0
(

n̂T

k+1⊗ I sc
)

0















(64)

D =























∂vecW[n̂1]
∂θθθ T

...

∂vecW[n̂k+1]
∂θθθ T

∂vecV
∂θθθ T























(65)

C =



















0 ∂vecW[n̂1]
∂ n̂T

1
. . .

∂vecW[n̂k+1]
∂ n̂T

k+1

0 0



















(66)

F =















0 · · · V

W[n̂1]
. . .

...

0 W[n̂k+1] 0















. (67)

In terms of these matrices, and writingN =
(

n̂T

1 · · · n̂T

k+2

)

, we have

dN

dθθθ T
=
(

I (k+2)sc −HC−F
)−1

HD. (68)

The derivatives ofV andW are given in Appendix B.
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Figure 7 applies this analysis to show the sensitivity ofn̂1 (i.e., the equilibrium

population immediately prior to the outbreak), and the corresponding elasticities

are shown in Figure 8. The overall pattern of sensitivities is similar to that in the

one time scale model (Figure 4). An increase in transmissionparameters reduces

the abundance of most stages, and increases in juvenile and adult transmission

parameters lead to respective increases in juvenile and adult prevalence. Overall,

sensitivities ofn̂1 in the two time-scale model are approximately two orders of

magnitude greater than the same sensitivities in the singletime-scale model. This

reflects the fact that the epidemic processes operate 101 times during a single an-

nual cycle, rather than once, and the corresponding scalingof parameters. The

elasticities adjust for this rescaling – comparing Figures5 and 8 reveals similar

effects of proportional changes in demographic and epidemic parameters. Both

in one time scale and the two time-scale example, the elasticities reveal the im-

portance of demographic parameters, fecundities in particular, on the equilibrium

stage abundances and the equilibrium prevalence.

6 Discussion

Any attempt to model the stage-structured epidemic must confront issues of multi-

ple classification of individuals, multiple time scales, and nonlinearities. A stage-

structured epidemic incorporates both demographic and epidemic processes, which

interact with each other. The demographic stage of an individual may influence

its susceptibility to disease, the mechanisms by which it transmits disease, and the

mortality and morbidity that it experiences when infected.The infection status

of an individual may influence its survival, growth, development, and reproduc-

tion, and thus the demographic processes leading to population growth or decline.

This in turn affects the reproductive number. In at least some cases, the disease is

able to regulate a population, that would otherwise grow exponentially, to a stable
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equilibriumn̂, with an endemic disease.

Stage-structured epidemics models are of interest in both human epidemiology

and wildlife diseases. Demographic processes (births or immigration) replenish

the pool of susceptibles. This can result in seasonal outbreaks that keep a pathogen

circulating in the population. The effects of birth rate on epidemic dynamics have

been observed in many natural systems. For example, changesin birth rates in

individual states in the US have been shown to influence the spread of rota-virus

in the US (Pitzeret al. 2009). High birth rates in Niger, in addition to strong

seasonality, changes the dynamics of measles from the expected annual cycle to

irregular, almost chaotic regime (Ferrariet al. 2008).

Population changes in plant and animal populations can be more extreme than

those observed in human populations, and interactions of wildlife diseases with

demographic and ecological processes are commonly reported (e.g., Härkönenet

al. 2002; Lloyd-Smithet al. 2007; Klepacet al. 2009; Matseret al. 2009; Wasser-

berget al. 2009). Wildlife populations are also more vulnerable to seasonal fluc-

tuations and changes in environment (e.g., Altizeret al. 2006; Jenouvrieret al.

2009), which can lead to more devastating outbreaks of infectious diseases. Ef-

fects of the changing environment or seasonality can be studied in this framework

by specifying disease-transmission matrices for different seasons.

Our approach to the stage-structured epidemic model classifies individuals

jointly by their demographic stage and infection status, and describes demographic

and epidemic processes as alternating in time. The respective transitions are de-

scribed by simple block-structured matrices, a simplification made possible by

the use of the vec-permutation matrix to rearrange the population vector. Multiple

time scales are accommodated by the periodic matrix model format, in which the

time step can vary within the overall projection interval. To summarise, the model

construction proceeds as follows:

24



1. Choose a set of demographic stages and infection states relevant to the ques-

tion at hand and the time scales of interest.

2. For each infection state, develop a demographic matrixR from the fecundity

and survival rates. Use these to create the block-diagonal matrix R.

3. Based on information about parental effects, develop theblock matrixM to

assign new offspring to their infection states.

4. For each demographic stage, develop the epidemic matrixA appropriate to

the choice of infection states. This step requires the choice of a disease

transmission model and specification of the WAIFW matrixβββ . Create the

block-diagonal matrixA from theAi.

5. Based on the biology and epidemiology of the system decideon the order-

ing of the demographic and epidemic processes and the time scale for the

epidemic interactions.

6. Construct the overall projection matrixB from (18) or (57).

The result of this construction is a nonlinear block-structured projection matrix

B[n]. From this matrix one can calculate the linearization at a specified disease-

free state and the eigenvalues of the Jacobian matrixJ. These eigenvalues give the

initial growth rate, or invasion exponent, for the disease,and determine whether an

outbreak will occur at that disease-free state. If desired,one can also compute the

next-generation matrix, and the reproductive numberR0. Finally, our approach

also gives the sensitivity analysis ofn̂, and of functions calculated from̂n, such as

stage-specific prevalence of the disease. These calculations are made possible by

the application of matrix calculus to the periodic matrix model; the computations

are straightforward in software (e.g., MATLAB , R, etc.) that is oriented to matrix

manipulations.

The projection matrixB calculated from (18) or (57) is a large (s× c) block-

structured matrix whose entries are complicated (possiblyvery complicated) sums

of products of mixtures of epidemic and demographic parameters. In principle, it
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would be possible to construct this matrix directly, by reasoning out all the pos-

sible transitions that an individual can make, and the parameters that determine

those transitions. In practice, this is difficult and prone to error, which is one rea-

son that the periodic matrix model formulation has proven useful in, e.g., spatial

models (Hunter and Caswell 2005), variable environment models (Caswell 2006,

2009), and two-sex models (Jenouvrier et al. 2010).

Sensitivity and elasticity analysis can be applied in many ways to epidemic

models. In addition to the sensitivity of a particular pointin an epidemic cycle,

one can, for example, compute the sensitivity of the averageor variance over the

cycle (Caswell 2008) to determine what influences the magnitude of an outbreak.

Instead of focusing onR0 one could consider the initial growth rate of the epi-

demic and its sensitivity, to see what most affects the speedof disease invasion.

We have presented our approach in terms of an intentionally simple example,

with two demographic stages and three infection states. However, we emphasise

that it is not limited to this case. Our approach permits easymodification of either

the demographic or the epidemic components. For example, the SIR model could

be modified to include an exposed class with a latent period (SEIR model), or a

class with waning immunity (SEIRS model). This would require only changing

the matricesAi that make up the block matrixA. The construction of the pro-

jection matrixB automatically accounts for the new stages and the interaction of

their rates with the other rates in the model, and the calculations ofR0 and the

sensitivity analysis of equilibrium follow directly from the same formulae. This

ease in modifying the models could be useful in parameter estimation, by making

it easier to compute likelihoods for a variety of different models structures.

Generalizations and future directions. Other than noting that our simulations

show that endemic equilibria of populations regulated by disease effects are pos-

sible, we have not explored the full range of possible dynamics of the stage-
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structured epidemic. There are significant mathematical problems involving the

existence of such equilibria, their local and global stability, and the possibil-

ity of other kinds of dynamics (cycles, invariant loops, strange attractors). If

density-dependent demography is included, there can be complicated interac-

tions between the demographic and epidemic nonlinearities. Our example used

density-dependent disease transmission. Frequency-dependent transmission, or

other models of contact and transmission processes, will change the patterns of

dynamics.

Immunisation and treatment strategies can be incorporatedinto the model, on

a seasonal and/or a stage-specific basis, by modifying parameters in the models

given here (as in Metcalf et al (2010) for exploring measles vaccination strategies),

or by incorporating immunisation matrices at the appropriate point in the annual

cycle.

Parental effects (vertical transmission, inherited immunity) may be important

in particular diseases. We have shown how to incorporate them, but their effects

have yet to be studied in any detail.

We have focused on structure due to demographic stages. However, spatial

structure can be treated as a special case of demographic stages, so our approach

could be applied to spatially distributed epidemics of the sort studied by, e.g.,

Lloyd & May (1996), Grenfellet al. (2001), Xiaet al. (2004), and Viboudet

al. (2006). In this case, matrices can be included that describestage-specific

migration rates; at any location, both immigration and births might affect the pool

of susceptibles available for infection.
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A Appendix: Matrix calculus

To calculate sensitivities in our approach we need to be ableto take derivatives

of matrices. Here we briefly review concepts from matrix calculus (Magnus and

Neudecker 1988). The derivative of a vectory with respect to a vectorx is a matrix

whose(i, j) entry is
dyi

dx j
. We denote the elasticities ofy with respect tox as

εy
εxT

=

(

x j

yi

dyi

dx j

)

. (69)

The elasticities are easily calculated from the sensitivities as

εy
εxT

= diag(y)−1 dy
dxT

diag(x) (70)

(Caswell 2008) where diag(x) is a matrix withx on the diagonal and zeros else-

where.

Vector derivatives are found by taking differentials and using the “first iden-

tification theorem” of Magnus and Neudecker (1988). The theorem states that if

for some vectorsx andy and some matrixQ it can be shown that

dy = Qdx, (71)

then it holds that
dy
dxT

= Q. (72)

Derivatives of, or with respect to, matrices are obtained bytransforming the

matrices into vectors using the vec operator. Thus the derivative ofm×n matrix
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Y andp×q matrix X is themn× pq matrix

dvecY
dvecTX

, (73)

where vecTX is short for(vecX)T.

Using these rules, the chain rule holds — ifY is a function ofX andX is a

function ofZ, then
dvecY
dvecTZ

=
dvecY
dvecTX

dvecX
dvecTZ

. (74)

Finally, we also use theorem due to Roth (1934) that states that if

Y = ABC (75)

it holds that

vecY = (CT ⊗A)vecB. (76)

B Appendix: Derivatives of block matrices

The sensitivities of̂n1 andn̂2 require the derivatives ofV andW, which in turn

require the derivatives of the block matricesA, M, andR. In (37), the necessary

derivatives ofV andW are given by

dvecV
dθθθ T

=
(

R
TK T

s+1,c ⊗K T

s,c

) dvecM
dθθθ

+
(

I sc ⊗K T

s,cMK s+1,c
) dvecR

dθθθ T
(77)

dvecW
dθθθ T

=
(

K T

s,c ⊗K T

s,c

) ∂vecA

∂θθθ T
(78)

dvecW
dnT

1
=

(

K T

s,c ⊗K T

s,c

) ∂vecA

∂nT

1
K s,c. (79)

Because of the block structure ofR, M, andA differentiation is of interest only

with respect to the component matrices. These derivatives can be obtained (Caswell

in prep.) as follows.
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We write

A =
s

∑
i=1

(Eii ⊗Ai) (80)

whereEii is as× s matrix with a 1 in the(i, i) position and zeros elsewhere. Then

it can be shown that

dvecA
dθθθ T

=
s

∑
i=1

(I c ⊗K s,c ⊗ I s)(vecEii ⊗ I c2)
dvecAi

dθθθ T
(81)

(Caswell in prep.).

Similarly,

R =
c

∑
i=1

(Eii ⊗Ri) (82)

where nowEii is a c× c matrix with a 1 in the(i, i) entry and zeros elsewhere.

Then
dvecR

dθθθ T
=

c

∑
i=1

(I c ⊗K s,c ⊗ I s+1)
(

vecEii ⊗ I s(s+1)

) dvecRi

dθθθ T
. (83)

The block matrixM is not diagonal, but it can be written as

M = (E11⊗ I c)+(E22⊗ I c)+(E13⊗G) (84)

where in this caseEi j is as× (s +1) matrix with a 1 in the(i, j) entry and zeros

elsewhere. The derivative ofM is

dvecM
dθθθ T

= (I s+1⊗K s,c⊗ I c)(vecE13⊗ I c2)
dvecG

dθθθ T
. (85)

C Appendix: Example matrices

Transition matrices from the example in Section 4.4.R is (9×6) matrix with the

following form for our parameter values:
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R =









R1 0 0

0 R2 0

0 0 R3









=







































0.54 0 0 0 0 0

0.36 0.8 0 0 0 0

0 0.3 0 0 0 0

0 0 0.63 0 0 0

0 0 0.27 0.8 0 0

0 0 0 0.2 0 0

0 0 0 0 0.54 0

0 0 0 0 0.36 0.8

0 0 0 0 0 0.3







































(86)

In the example we ignore maternal immunity, vertical transmission, or vacci-

nation at birth, so the matrixM that describes parental effects is simply:

M =

























1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

























(87)

Epidemic transitions depend on the number of infected individuals at timet:

A[n(t)] =

(

A1[n(t)] 0

0 A2[n(t)]

)

(88)

=

























e(−0.0036n12−0.0014n22) 0 0 0 0 0

1− e(−0.0036n12−0.0014n22) 0.9 0 0 0 0

0 0.06 1 0 0 0

0 0 0 e(−0.0014n12−0.0036n22) 0 0

0 0 0 1− e(−0.0014n12−0.0036n22) 0.9 0

0 0 0 0 0.07 1
























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The overall transition matrixB as defined in equation (19) and evaluated at

initial conditions is

B =

























0.5394 0.2997 0 0.1998 0 0.2997

0.0006 0.0003 0.6294 0.0002 0 0.0003

0 0 0.0006 0 0.54 0

0.3593 0.7984 0 0 0 0

0.0007 0.0016 0.2697 0.7992 0 0

0 0 0.0003 0.0008 0.36 0.8000

























(89)
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Figure 1: Reproduction matrixR accounts for the reproduction, survival and

growth. New individuals temporarily show up in extra states(n3·) before they

are assigned to their epidemic categories.
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prevalence. Parameters as in Figure 4; shaded regions correspond to the epidemic
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Figure 8: Stage-structured epidemic model with two time scales: (a) elasticities of

the equilibrium population just before the outbreak (n̂1); (b) elasticity of disease

prevalence. Parameters as in Figure 4; shaded regions correspond to the epidemic

parameters.
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