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Abstract

Stage-structured epidemic models provide a way to conhedhteract-
ing processes of infection and demography. Reproductidrdamelopment
can replenish the pool of susceptible hosts, and demograpticture leads
to heterogeneous transmission and disease risk. Epidemitsn, can in-
crease mortality or reduce fertility of the host populatidtere we present
a framework that integrates both demography and epidegydlo models
for stage-structured epidemics. We use the vec-permutatairix approach
to classify individuals jointly by their demographic staged infection sta-
tus. We describe demographic and epidemic processes amatiltg in time
with a periodic matrix models. The application of matrixaadls to this
framework allows for the calculation o¥y and sensitivity analysis.
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1 Introduction

The basic epidemic models classify individuals on the baisilseir infection sta-
tus (susceptible, infected, recovered, immune, etc.) determine the dynamics
of the epidemic on the basis of the rates of individual movenanong these
infection states (Anderson & May 1991). Individuals alsa aviously differ
in demographic characteristics (age, maturity, size agctive status, etc.). De-
mographic models describe the rates of individual movermering these stages,
and the resulting population dynamics. These two kinds ofenent are not
independent; rates of survival, reproduction, and grow#ly fioe influenced by
infection status, and rates of disease transmission,tiofecand recovery may
differ among demographic stages. Models for stage-clads#fpidemics provide
a way to study the interaction between epidemic and dembgrapocesses.

Stage-structured epidemic models face several challefigpey must classify
individuals by two criteria, and keep track of the densitésll possible combi-
nations of infection status and demographic stage. They atsis recognise the
frequent difference between demographic and epidemics$icages. An individ-
ual that lives for many decades may experience many boutdeaftion lasting a
few weeks; sometimes disease outbreaks are highly seaswhedstricted to part
of the year, while demographic processes may take placencamy years.

There is a sizable literature on various aspects of the apese of age struc-
ture (e.g. Castillo-Chaveat al. 1989; Busenberg & Hadeler 1990; Diekmann
& Heesterbeek 2000; Hethcote 2000; Dietz & Heesterbeek ;ZDBi2me 2003).
However, especially in studies of plant and animal diseaags may be inade-
guate as the state that characterises individuals (knowniastate variable), and
the infection process may depend more on physiological bawieural stages
than on age per se. Age, however, is a special case of stathe, slage-structured
epidemic includes age-classified as well as stage-classifaslels.



Our stage-structured epidemic models classify indiviggaintly by infec-
tion status and demographic stage, and include transitinrise short time scale
of epidemic processes in a model in which demographic psesegperate over
longer time scales. The key to our formulation is the joirtssification of in-
dividuals. We use the approach introduced by Hunter & Cd<®6D5); it was
originally used to develop models classifying individulysstage and spatial lo-
cation, and has since been extended to consider stage anor &gge and envi-
ronmental states (Caswell 2009b). We combine this apprad@bithe model for
stage-structured disease transmission in Klepat (2009).

Constructing a stage-classified epidemic model begins avgat of matrices
that describe demographic processes, including the ptioduaf new individuals
by reproduction and the roles (if any) of vertical transnoisgnd inherited immu-
nity. Then another set of matrices describe the infectiamadyics, as a function
of stage-specific transmission rates. Model developméatiktated by using the
vec-permutation matrix to rearrange demographic staggadection categories
so that the matrices can be written in block diagonal formntdu & Caswell
2005).

The result of this construction is a nonlinear matrix popatamodel. Be-
cause demographic and epidemic processes alternate withé@ar, and do so
repeatedly from year to year, the model is a periodic matodeh (Caswell 2001,
Chapter 13). We will focus here on the asymptotic dynamiagjqularly the pos-
sibility of endemic equilibrium, and on the calculation b&tbasic reproduction
numberZy. We will also use recent developments in perturbation aistyf non-
linear matrix population models to study the sensitivitgqtiilibria to changes in
parameters.

Notation. We use lower case bold symbols (em). for vectors and upper case
(N) for matrices. Our model will include many block-structdmaatrices, which



we denote as, e.gN. Where convenient, we useAVILAB notation, whereN(i, :)
andN(:, j) refer to rowi and columnj of N, respectively. We use subscripts when
necessary to indicate the size of matrices or vectors;le..an identity matrix
of orders. We usell to denote & x 1 vector of ones, andj s to denote thgth
unit vector of lengtts (i.e., columnj of Is). The transpose dfl is denoted byNT™,
the Kronecker product ig), and the vec operator ved) stacks the columns of a
matrix one above the next.

2 Model development

We classify individuals intes stages and infection states. As an example, we
will develop the model fos = 2 stages (juveniles and adults) ang 3 infection
categories (susceptible, infected, and recovered), leugémeralisation to more
stages or more infection categories should be obvious.

The state of the population at tinhés given by thes x c array
N1 -+ Nic
N(t) = : : 1)
N1 -+ Ng

The arrayN(t) can be transformed into a vector suitable for populatiofegtmn
in two ways (Hunter and Caswell 2005), using the vec operator

N(:,1)

n = vec(N)= : (2)
N(:,c)
N(1,:)"

m = vec(N")= : (3)
N(s,:)T



The first of these stacks the columnsMNfone above the other, grouping stages
together within infection categories. The second stac&grdmsposed rows of
one above the other, grouping infection categories witkeimagraphic stages.

At times during the annual cycle, the number of stages octitfe states may
change. In our example, reproduction will temporarily progl an extra stage of
newborn individuals; the corresponding population vebts length{s+ 1)c and
we will denote it byn’.

The two population vectors are related by
vec(N") = Kscvec(N) 4)

where the matriXX s is called thevec-permutation matrix (Henderson & Searle,
1979, 1981) or the commutation matrix (Magnus & Neudeck@85). It is given

by s ¢
Ksc= Eij ® Ef; (5)
2,2, FIeE;

whereE;; is ans x ¢ matrix with 1 in the(i, j) position and zeros elsewhere, and
® is the Kronecker matrix product. Sinéeis a permutation matrix™ = K 1,

2.1 Demographic dynamics

The population at any time-step consists of juveniles andtathat can either be
susceptible, infectious, or recovered. Individuals ingtegye and epidemic cate-
gory j suffer mortalitymy; from natural, non-disease related causes. Juveniles in
the epidemic categotysurvive and grow to adults (in the same epidemic category)
with the probabilityg;. Adults in the epidemic categorphave the per-capita fertil-
ity fj, and they produce newborns that are temporarily in threedeanographic
stages (see Figure 1 for an illustration). These offsprimgdéstinguished from
extant juveniles in order to account for infection status tumaternal immunity



or vertical transmission. The demographic rates (suryawth, reproduction)
defined by Figure 1 are specified within infection categoby a matrixR;, of
dimension((s+1) x s)

(1—0i)(1—my) 0
Ri = gi(1—my) 1—my; i=1....¢c (6)
0 fi

In general, the firss rows of the matrixR; give the survival and transition

of individuals among the demographic stages. The entries in rew 1 are the
fertilities of each of the stages.

The demographic transitions for the whole population avergby
R1

nt) = n(t) (7)
Re

= Rn() (8)

whereR is a block-diagonal matrix containing tig, andn’ is a vector of length
(s+1)c.

2.2 Parental effects

The infection status of newborn individuals may be influehbg that of their
parents, due to inherited immunity, vertical transmissibmfection, or perhaps
vaccination programs targeted at newborns. To accounhéset effects, and to
allocate newborn offspring to the appropriate infectiatist, we define
v = proportion of offspring of infected parents that are inéett
= proportion of offspring of recovered parents that are imewun

w = proportion of offspring of susceptible parents that are imm
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In terms of these parameters, we define a ma&rix
l1-w 1-v 1-h
G= 0 v 0 (9)
W 0 h

that allocates new offspring to the appropriate infecttagss in the juvenile stage
(Figure 2). We us& to update the population vector,

lc| 0] G
n = K n’ 10
( 0 I 0> s+1.c ( )
= MKs+1,cn/, 11

|
whereM = c|0]G .
Ol O
2.3 Disease dynamics

After accounting for survival, growth, and reproductiore describe disease dy-
namics by a discrete-time SIR model specific to each dembgrafage. By writ-
ing the population vector as = vec(N"), we can use a block diagonal matrix to
describe the dynamics,

A]_[m]
m = m(t) (12)

= Almjm (13)
The matrixA; describes transitions among infection states

1—Ai[m] 0 0
A= Ailm]  1-y O (14)
0 riVi 1



In (14), Ailm] is the probability of infection in stage(equivalent to instanta-
neous force of infection in continuous time models, or peguitearate at which
susceptibles acquire infection) and depends on the ergctomm = vec(N").

The function/\[-] depends on the type of transmission (e.g., Diekmann & Heeste
beek 2000; Begost al. 2002; Brauer 2006). We describe this dependence with a
matrix B of transition rates (the ‘who acquires infection from whoor WAIFW
matrix (Schenzle 1984; Anderson & May 1985; Anderson & Ma@1;9Dob-

son 2004)). The elemei; is the transmission rate from infected individuals in
stagej to susceptible individuals in stageThe parameter; is the probability of
recovering from infection(1 —r;) is the probability of dying if infected.

For density-dependent transmission, usually appropiaat&irborne diseases,
the number of contacts is related to host density and the fofrmfection in stage
i depends on the total number of infectious individuals.

Ai(m) = 1—exp(—pB(i,:)N(:,2)) (15)
= l1-exp[-€s(B®eys)m] (16)
Frequency-dependent, or proportional mixing, transmississumes a fixed

number of contacts over the time-interval; and the infecpmbability for stage
depends on the proportion of infectious cases in the totaliladion,

(17)

Ai(m) =1— exp[—@,s(ﬁ ®es) m]

1.m
where the denominatdgin is total population size.

2.4 The stage-structured epidemic model

To obtain a model for the stage-structured epidemic thdtdes all these pro-
cesses, we form the periodic matrix producti®f M, and A, using the vec-



permutation matriXX to re-order the stages as necessary:

nit+1) = K AMMKsiicRN(t) (18)
= B[n®)]n(t) (19)

wherem = MK, 1 cRN(t) is the population just prior to the epidemic. Working
from right to left, the model first accounts for demographansitions and repro-
duction, then for parental effects on new offspring, andlffinfar transmission,
infection, and recovery. The demographic dynamics inchhéeeffects of infec-
tion status (through thg;) and the disease dynamics include demographic effects
(through theA;).

Note that the projection fromto t + 1 (say, from one year to the next) is
described by a sequence of matrices on shorter, intra-atimeascale, and that
the sequence is repeated to project frioml tot + 2, and so on. Thus (18) is a
periodic matrix model (Caswell 2001, Chapter 13). Such risockn be analysed
on both the interannual time scale, as in (19), or investian a finer scale using
(18). The time-scale issue mentioned in the Introductiaggssts that it may be
desirable to change the ratio of demographic and epideamsitions; we return
to models with two time scales in Section 5.

3 %, forthe stage-structured epidemic

The occurrence of a disease outbreak depends on what hagpanstroduction

of an infection into an otherwise uninfected populatione Téproductive number
%o gives the expected number of new infections produced by glesinfected
individual in a completely susceptible population (Die&75; Diekmanret al.
1990; Anderson & May 1991). #7, > 1 the infection spreads and results in an
epidemic; if%y < 1 the infection dies out.

In the simplest models%, is the product of the rate of production of new
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infections and the average duration of the infectious siéffeen there are multiple
infectious stages%y is the dominant eigenvalue of the next-generation matrix,
given byF(I —U)~1 whereF is a matrix of rates of production of new infections
andU is the matrix of transition rates among the infectious ssgge Cushing and
Yicang 1994; van den Driessche & Watmough 2002; Allen & van Deessche
2008).

In the stage-structured epidemic, which may include midlipfected classes
and multiple demographic stage#, can be derived from an explicit invasion
calculation.

The population dynamics are given by the nonlinear systé&n @or ease of
derivation, we write the susceptible, infected, and recedeomponents af as

ns
n= n . (20)

nRr

The attempted invasion of the infection takes place at afpedisease-free pop-
ulation

Ns

0 . (22)
0

Often, n will be an equilibrium, but it could be some other populati@ttor of
interest. In a stage-structured epidemic, population siag be changing over

=
I

time, and%Zy may change with population size and structure.

To computeZ, we rewrite (18) as

Ns Ns
o [ t+n=| xm) [ Y | zin) n |0, @2
NR nr

where the empty cells in the matrix contain expressionsdtanot used in this
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calculation. Following Allen & van den Driessche (2008), f@eus on the dy-
namics ofn;, which are given by

N (t+1) =Y[n] n(t) +X[n] ns+Z[n] ng. (23)

The occurrence of an outbreak depends on the invasion erpaombich is the
long-term growth rate of the linearisation of (23) n@awith ns andng fixed at
valuesiis andfir, respectively. This linearization is given by

o dni(t+1)
N dni(t) |4

n

(24)

(Verdy & Caswell 2008). Note that the invasion of the infeaticould be deter-
mined directly from the dominant eigenvaldeof J; the invasion will be suc-
cessful if and only iffA| > 1. However, it is customary in epidemiology to study
the invasion in terms ofZy. See Wallinga & Lipsitch (2007) for a relationship
betweem and%,. Differentiating (23) gives

dni(t+1) = (dY)ni(t)+Ydn(t)+ (dX)Ag(t) + (dZ)hR(t)
= (n{(t)®I)dvecY +Ydn(t)
+ (Ag(t)®1)dvecX 4+ (Ag®1)dvecZ. (25)

Evaluating afi gives the Jacobian

dvecX +(AR®1) dvecZ
dn/ R dnr

where all derivatives are evaluatediat

J=Y[A]+ (As®1) (26)

The matrix derivativedvecX /dnj anddvecZ /dn| are obtained fron® using
the same approach that we describe below in Section 4.1 feretitiate with
respect to parameters.

To obtain the next-generation matrix, we must decomgas® transitions of
extant infected individuals and the production of new itifets.

J=F+U (27)
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whereU contains transitions of extant individuals aRdhe production of new
individuals. Since infections reproduce themselves oglyrédnsmission, we can
calculateU by setting transmission rates to zero and evaluating

U=Jlg_0- (28)
ThenF = J— U and the reproductive number is

Ao = maxeig(F (- U)_1> . (29)

4 Dynamics of the stage-structured epidemic

In the absence of the disease, the infection matriksappears from (18), leading
to a linear model with projection matrix

B =KL MKs1cR (30)

and the population will eventually grow exponentially abgergiven by the dom-
inant eigenvalue oB. Note thatB may be reducible, because susceptible and
recovered stages do not communicate in the absence ofiorfebut the eigen-
values ofB still determine population growth. If the demography weeasity-
dependent, then the disease-free dynamics would be nanlered might include
equilibria, cycles, invariant loops, or strange attragtde do not consider these
possibilities further.

The dynamics in the presence of the disease depend, in aicatedlway, on
the interaction between the infection dynamics and thectffef infection on the
demographic rates. If the population grows to the point wi¥és > 1, so that the
disease can persist, and if infection reduces survival @meduction sufficiently,
our simulations show that it is possible for the disease e endemic and
regulate the population to a stable equilibrium.
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If an equilibrium exists on the annual time scale is a 2-cgdéhe intra-annual
time scale. The population oscillates between a stajast before the epidemic
and a staté, just after the epidemic. These vectors satisfy

Aii = KL MKsi1cRA (31)
ﬁz - K;C A[K S,C ﬁ]_] KS,C ﬁ]_ (32)

4.1 Perturbation analysis of the endemic equilibrium

The intra-annual cycle defined By andh is determined by the parameters defin-
ing the demographic rates, the maternal influences, andrtduegses of disease
transmission and recovery. Changes in these parametérshaiigen; andn,.
Perturbation analysis gives the sensitivity and elagtiafifi; andf, to the param-
eters, which may be valuable in the design of public heal#riugntions or in the
interpretation of natural changes in parameters.

It is obvious from the construction of the stage-structueptdemic model
that the effects of parameters én andn, can be very complicated. However,
methods based on matrix calculus (Magnus & Neudecker 1988grthe calcu-
lations possible. This approach has recently been appliedaological contexts
by Caswell (2006; 2007; 2008; 2009a; 2009b; Verdy & Caswell®. In partic-
ular, we rely on methods given in Caswell (2008, Section 8ghArt description
of these methods is given in Appendix A.

Let 8 be a vector of parameters, of dimensijox 1. Then the sensitivity of
the equilibrium cycle is given by the derivatives of elenseimtn; andn, with
respect to all parameters @h i.e., by

diy;
doe’
Each of these derivatives is a matrix, of dimensson p, whose(i, j) entry is the

i=1,2. (33)

partial derivative of théth entry infi; with respect to thgth entry of@.
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To begin the calculation, we rewrite the 2-cycle in (31) aB®l) (@s

N1 = Vi (34)
Ay = W[AqN;. (35)
To find the sensitivity of the 2-cycle we differentiate (31)da(32), and apply

the vec operator, the chain rule, and the first identificati@orem (Magnus &
Neudecker 1985) to obtain

dn . dvecV dn

dor — (Bole) g Vg (362)
dnp ovecW . _ ovecW dn, dn,

deT - (n1®|$)W+<nl®l$) dﬁ-{ d9T+WdeT (36b)

with all derivatives evaluated &fi1,n»). The calculation of the derivatives &f
andW is described in Appendix B.

We rewrite the system in block-matrix form as
dvecW
d (A 0 | @on \| s
do’ \ n, (AT®1) ‘ 0 dvecV

doe’

N = (ﬁ”) (38)
nz

(o)
F = _ (39)
W[n]_] 0



_ ( 0 \(ﬁ;®|>> (40)
CEDIC

ovecWw

0 —

C = dn]_ (41)
0 \ 0

OW([fy]
T
D = 00 . (42)
v
00"
In terms of these matrices, (37) becomes

dN dN
90 = HD + [HC + F] 40

(43)

which can be solved for the sensitivitiesfafandf, as in Caswell (2008), to give

dN

W:(IZSC—HC—IF)’lHD. (44)

4.2 Sensitivity of stage-specific prevalence

The sensitivities ofi; andf, given in (44) can be extended to examine the ef-
fects of parameters on stage-specific prevalence of thasiisét either of th@;
(i.e., either just before or just after the epidemic), we dafine the equilibrium

prevalence as

a'n
b™n
wherea andb are vectors that depend on the classes being consideredotaéhe

B

(45)

prevalencd?; (total infected over total population size) is obtained bitiag

a = e:®1 (46)
= 1. (47)
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The stage-specific prevalenlép(infected in stagg over population in stag@ is
obtained by setting

a = ecRes (48)
= 1(; X ej ,S- (49)

These prevalence measures are examples of ratios of weightes. In either
case, the sensitivity d? is given by (Caswell 2008)

5 TAAT _ aTART A
dP (b na anb) dn (50)

G (bTﬁ)z do™

4.3 Elasticities of the equilibrium and prevalence

The calculation of calculation of elasticities, or propanal sensitivities, is de-
scribed in Appendix A. The elasticities of the endemic dafuilm and equilib-
rium prevalence are given by

eN . 1 0dN
e—GAT - dlag(AN) 1o diag(0) (51)
eP 1dP .

4.4 An example of the one time scale model

As a numerical example of the stage-structured epidemlcavié time scale (18),
we develop a SIR-type modet & 3 epidemic categories) with a single episode
of disease transmission each year in a population swtt® stages (juveniles and
adults), for a potentially fatal disease with a long infeas period. We describe
the contact process with two parameters; contact withigestg3;) and contact
between juveniles and adultg,], and we assume thg@ > ). This stage-

16



Table 1: Parameters for the one and two time-scale moddis¢sptss,i,r denote

infection statesj, a denote demographic stages).

One time scale model

Two time scale model

parameter value | parameter value
0s=0r 04 [o=0 0.4

gi 0.3 Oi 0.3

mgs) = mgi) = mgr) 0.1 mgs) = mgi) = mgr) 0.1

md =m{’ =m{’ | 0.2 md =m{’ =m{’ | 0.2

fo= f, 0.3 fs= f; 0.3

f 0.2 f 0.2

Bi1= Bz 0.0036|| 21 = P2 3.564.1073
Bi2= B 0.0014|| 2z — Pt 1.386-10°3
) 06 | rik 0.9950

ra 0.7 | rle? 0.9965
vil=vyat 10 - 0.099
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specific mixing pattern is captured with the WAIFW matrix,

B B
= . 53
g ( B B ) 53)

We assume density-dependent transmission (16). We as$atnent average in-
dividuals stay infected for 10 yearg & 1/10), after which they either recover
with life-long immunity (with probabilityr;), or die (with probability 1-r;).

The demographic part of the model includes all mortalitydicgctly resulting
from the disease. This mortality may depend on infectiotustdecause infected
individuals may be more susceptible to other diseases sierdargets for preda-
tors. We assume no parental effects (maternal immunitjicettransmission).

Parameter values for the single time scale model are givéralie 1, and
the full matrices are given in Appendix C. With these parargtthe population
grows exponentially in the absence of the disease at tha rat&é.023. Infection
introduces nonlinearity to the model that brings the pofpaieto an equilibrium.
In this exampleZy = 2, at an initial disease-free population of

n=(100 100 0 0 0 o)T (54)

and the convergence to the endemic equilibrium is showngnrgi3. The equi-
librium population is

(55)

56.22 772 063
6394 3331 1120

The equilibrium prevalence in the entire populatiorfig = 0.24. The stage-
specific prevalences afg = 0.12 andP, = 0.31.

The sensitivity of the equilibrium population just befohetoutbreakif;) to
the parameters, calculated according to (44), is showrguarEi4a. An increase in
transmission parameters (elementgdfdecreases the abundance of most stages
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due to increased outbreak intensity. Increase in juveratesmission increases the
level of juvenile infecteds but also of juvenile immune sléisrough the process
of recovery. Increases in stage-specific transmissiontteattreased prevalence
in that stage (Figure 4b). The importance of demographiarpeaters, especially
the fertilities, on the equilibrium levels and prevaleneedmes apparent when
we look at the elasticities in Figure 5.

5 A model with epidemic and demographic time scales

In the stage-structured epidemic model (18), each yeaaowna single episode
of demographic change and a single episode of epidemic eh&tayvever, many
pathogens exhibit outbreaks on short time scales, on ther ofdlays or weeks,
rather than years. In such cases, a stage-structured d@pidedel with a single

time scale will either lose the details of the epidemic pss¢eor describe the
demography on an inappropriately short time scale. Outisoltio this dilemma

is to explicitly include two time scales in the model.

To examine the infection process on a shorter time scalegplace the matrix
A[m] in (18) with the product of a set &+ 1 matrices

Am(t+kA)]---Alm(t+A4)] Am(t)] (56)

whereA < 1 is the time step on which the detailed trajectory of the ek is
modelled. The resulting stage-structured epidemic is then

n(t+1) = K;C{A[m(t+m>] . -A[m(t-l—A)]A[m(t)]} M Ksi1cRN(L). (57)

IWe note that our approach to the stage-structured epideasigteat flexibility in specifying
time scales and seasonal variation. One could include pieyl&lternating matrices corresponding
to seasonal patterns of demographic and infection prose$se analysis of these models, using
block matrices and the vec-permutation matrix, would follilhe same sequence shown in the
examples here.
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The disease transition matric&s:| depend on the population vector at inter-
mediate times betwedrandt + 1, given by

MKs1cRN(t) ifi=0

: : . (58)
Am(t+(i—1)A)] m(t+(i—1)4) ifi=1,....k

m(t+iA):{

5.1 An example of the two time-scale model

In the model with two time scales, we scale the parameterbaothe disease
process gets the same amount of time as in the one time-sGatgke, but that
time is divided up into finer intervals, to see more of the dietf the infection
process. This change in time scale changes the model fronk 1 tbiterations
of the epidemic transitions per population projectioniivé Since we are now
sampling the same time interval- 1 times, the duration of the infection, pr?,
now becomesk+ 1)y 1, the survival probability in the finer interval is naWeD).
The probability of escaping the infection during tke- 1 steps is(1—A), so
the probability of escaping the infection during the onelf tiner steps i$l —

A)%1) which requires8 — &

To explore this model, we modified the example in Section 4.4hbluding
101 epidemic iterations (i.ek,= 100), and rescaled parameters for a two time-
scale model according to Table 1. We set initial conditians t

n©)=( 100 100 1 0 0 o)T. (59)

Viewed on the annual time scale, the population convergas equilibrium reg-
ulated by the disease (Figure 6). The equilibrium poputaiso

(60)

o [ 6084 1829 315
50.27 5738 3215

As expected the dynamics are qualitatively similar (butidentical, because of
nonlinearitites) to those in Figure 3. On the intra-annunaétscale, the oscillatory
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dynamics are apparent (Figure 6). The solution on the intraial time scale is a
cycle of periodk + 2, satisfying

A = KIMKsi1cRR2
Ao = KIoA[Kschy]Kschy
(61)
N = Kgeh [Kselk1] Ksefikr

The total prevalence at the annual equilibriunBig = 0.34. Stage specific
prevalences arg; = 0.14 andP, = 0.36.

To calculate the sensitivity of the cycle, we rewrite (61) as

N1 = Vi
Ay = WAl

(62)
ke = WlAkpa]Niyg

The sensitivity of thik-cycle is an extension of the analysis for the 2-cycle (see
Caswell 2008, Section 8.1). Differentiating gives

dn, T dvecV dﬁk+2

do’ = (nk+2®|$) do’ + de’ (633)

dh, ovecW[ny] .. ovecW(n] . . dip

i (M1 ® ) T I (M ®lg) o + W[i,] 40" (63b)
dﬁk+2 AT aVECW[ﬁk+1] AT aVECW[ﬁk+1] ~ dﬁk+1
—ar = (M1 ®lg) ——Fpr—— + (M1 ®ls) —57—— + W[k 1] —o7
de’ (i1 10) =5 g7 (i1 1) of}, 4 T deT

(63c)

with all matrices and derivatives evaluatedia, . . ., g, »). To simplify and solve
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for the derivatives of th@;, define the following block matrices:

0

(ﬁhz ® lSC)

(A1®ls) | O

(64)

ovecW(n]

00’

ovecW Ay 1]
00’
ovecV

00’

ovecW|n]

AT
ony

(My1©1s0) 0

(65)

(66)

ovecW (N 1]

AT
Ny g

0

(67)

WA 1]

0

In terms of these matrices, and writifg= < AL - N, ) we have

ay
do’

= (I 2y —HC —~

1

F) 'HD. (68)

The derivatives oV andW are given in Appendix B.
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Figure 7 applies this analysis to show the sensitivitgofi.e., the equilibrium
population immediately prior to the outbreak), and the egponding elasticities
are shown in Figure 8. The overall pattern of sensitiviteesimilar to that in the
one time scale model (Figure 4). An increase in transmigséwameters reduces
the abundance of most stages, and increases in juveniledadidti@nsmission
parameters lead to respective increases in juvenile antd@eualence. Overall,
sensitivities offi; in the two time-scale model are approximately two orders of
magnitude greater than the same sensitivities in the stimgescale model. This
reflects the fact that the epidemic processes operate 1@% tnring a single an-
nual cycle, rather than once, and the corresponding scefipgrameters. The
elasticities adjust for this rescaling — comparing Figusesnd 8 reveals similar
effects of proportional changes in demographic and epidgraiameters. Both
in one time scale and the two time-scale example, the elessiceveal the im-
portance of demographic parameters, fecundities in péaticon the equilibrium
stage abundances and the equilibrium prevalence.

6 Discussion

Any attempt to model the stage-structured epidemic mudgtantissues of multi-
ple classification of individuals, multiple time scalesgaronlinearities. A stage-
structured epidemic incorporates both demographic artibepc processes, which
interact with each other. The demographic stage of an iddalimay influence
its susceptibility to disease, the mechanisms by whiclaitgmits disease, and the
mortality and morbidity that it experiences when infectddthe infection status
of an individual may influence its survival, growth, deveaiognt, and reproduc-
tion, and thus the demographic processes leading to paputaiowth or decline.
This in turn affects the reproductive number. In at leastescases, the disease is
able to regulate a population, that would otherwise grovoegptially, to a stable
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equilibriumn, with an endemic disease.

Stage-structured epidemics models are of interest in hotiain epidemiology
and wildlife diseases. Demographic processes (births origration) replenish
the pool of susceptibles. This can resultin seasonal caktbrinat keep a pathogen
circulating in the population. The effects of birth rate @idemic dynamics have
been observed in many natural systems. For example, chanpash rates in
individual states in the US have been shown to influence tresagpof rota-virus
in the US (Pitzeret al. 2009). High birth rates in Niger, in addition to strong
seasonality, changes the dynamics of measles from the texppacnual cycle to
irregular, almost chaotic regime (Ferratial. 2008).

Population changes in plant and animal populations can lve extreme than
those observed in human populations, and interactions ldfifgi diseases with
demographic and ecological processes are commonly reb@g., Harkonemt
al. 2002; Lloyd-Smittet al. 2007; Klepact al. 2009; Matseet al. 2009; Wasser-
berget al. 2009). Wildlife populations are also more vulnerable tcsseal fluc-
tuations and changes in environment (e.g., Altidteal. 2006; Jenouvrieet al.
2009), which can lead to more devastating outbreaks of tiofex diseases. Ef-
fects of the changing environment or seasonality can beestuil this framework
by specifying disease-transmission matrices for diffeserasons.

Our approach to the stage-structured epidemic model Gissndividuals
jointly by their demographic stage and infection statud,@@scribes demographic
and epidemic processes as alternating in time. The respdansitions are de-
scribed by simple block-structured matrices, a simplifidaimade possible by
the use of the vec-permutation matrix to rearrange the @ojpul vector. Multiple
time scales are accommodated by the periodic matrix mod®lap in which the
time step can vary within the overall projection intervad. Summarise, the model
construction proceeds as follows:
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1. Choose a set of demographic stages and infection stédgameto the ques-
tion at hand and the time scales of interest.

2. For each infection state, develop a demographic m@gtfimm the fecundity
and survival rates. Use these to create the block-diagoatixiR.

3. Based on information about parental effects, developlihek matrixM to
assign new offspring to their infection states.

4. For each demographic stage, develop the epidemic matppropriate to
the choice of infection states. This step requires the ehofca disease
transmission model and specification of the WAIFW mapixCreate the
block-diagonal matrip from theA;.

5. Based on the biology and epidemiology of the system demidée order-
ing of the demographic and epidemic processes and the tiate &g the
epidemic interactions.

6. Construct the overall projection matiixfrom (18) or (57).

The result of this construction is a nonlinear block-stuuet! projection matrix
B[n]. From this matrix one can calculate the linearization atecdjed disease-
free state and the eigenvalues of the Jacobian matiikese eigenvalues give the
initial growth rate, or invasion exponent, for the diseas®l determine whether an
outbreak will occur at that disease-free state. If desived,can also compute the
next-generation matrix, and the reproductive numdggr Finally, our approach
also gives the sensitivity analysisiofand of functions calculated frofn such as
stage-specific prevalence of the disease. These calmdaire made possible by
the application of matrix calculus to the periodic matrixaef the computations
are straightforward in software (e.g.,AVLAB, R, etc.) that is oriented to matrix
manipulations.

The projection matriX8 calculated from (18) or (57) is a large X c) block-
structured matrix whose entries are complicated (poss#y complicated) sums
of products of mixtures of epidemic and demographic pararsetn principle, it
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would be possible to construct this matrix directly, by agasg out all the pos-
sible transitions that an individual can make, and the patara that determine
those transitions. In practice, this is difficult and prooetror, which is one rea-
son that the periodic matrix model formulation has provesfuisn, e.g., spatial
models (Hunter and Caswell 2005), variable environmentetso@aswell 2006,
2009), and two-sex models (Jenouvrier et al. 2010).

Sensitivity and elasticity analysis can be applied in mamyswto epidemic
models. In addition to the sensitivity of a particular pamian epidemic cycle,
one can, for example, compute the sensitivity of the aveoagariance over the
cycle (Caswell 2008) to determine what influences the madaibf an outbreak.
Instead of focusing oy one could consider the initial growth rate of the epi-
demic and its sensitivity, to see what most affects the spédisease invasion.

We have presented our approach in terms of an intentionatigle example,
with two demographic stages and three infection states.eddewwe emphasise
that it is not limited to this case. Our approach permits easglification of either
the demographic or the epidemic components. For exam@&IR model could
be modified to include an exposed class with a latent peri@&R$nodel), or a
class with waning immunity (SEIRS model). This would requanly changing
the matricesA; that make up the block matri&. The construction of the pro-
jection matrixB automatically accounts for the new stages and the interacfi
their rates with the other rates in the model, and the cdionls of %Zy and the
sensitivity analysis of equilibrium follow directly fronhé same formulae. This
ease in modifying the models could be useful in parametanatbn, by making
it easier to compute likelihoods for a variety of differenbdels structures.

Generalizations and future directions. Other than noting that our simulations
show that endemic equilibria of populations regulated Isgdse effects are pos-
sible, we have not explored the full range of possible dywcanof the stage-
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structured epidemic. There are significant mathematiagblpms involving the
existence of such equilibria, their local and global sighiland the possibil-
ity of other kinds of dynamics (cycles, invariant loops,asge attractors). If
density-dependent demography is included, there can belaated interac-
tions between the demographic and epidemic nonlinearitag example used
density-dependent disease transmission. Frequencyxdepetransmission, or
other models of contact and transmission processes, vét@h the patterns of
dynamics.

Immunisation and treatment strategies can be incorponatedhe model, on
a seasonal and/or a stage-specific basis, by modifying eaeasnin the models
given here (as in Metcalf et al (2010) for exploring measkxination strategies),
or by incorporating immunisation matrices at the apprdproint in the annual
cycle.

Parental effects (vertical transmission, inherited imity)rmay be important
in particular diseases. We have shown how to incorporata,tbet their effects
have yet to be studied in any detail.

We have focused on structure due to demographic stages. vdgvepatial
structure can be treated as a special case of demographes st our approach
could be applied to spatially distributed epidemics of tbe studied by, e.g.,
Lloyd & May (1996), Grenfellet al. (2001), Xiaet al. (2004), and Vibouckt
al. (2006). In this case, matrices can be included that desstéuge-specific
migration rates; at any location, both immigration andhsmnight affect the pool
of susceptibles available for infection.
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A Appendix: Matrix calculus

To calculate sensitivities in our approach we need to be tabtake derivatives
of matrices. Here we briefly review concepts from matrix aals (Magnus and
Neudecker 1988). The derivative of a vectavith respect to a vectoris a matrix

whose(i, j) entry is%. We denote the elasticities giwith respect tox as
j
&y _ (xdyi
ex’ (yi dx; ) ' (69)

The elasticities are easily calculated from the sensiivias

gy . 1 dy .
% = diagly) " ; diagx) (70)

(Caswell 2008) where didg) is a matrix withx on the diagonal and zeros else-
where.

Vector derivatives are found by taking differentials anchgghe “first iden-
tification theorem” of Magnus and Neudecker (1988). The itheostates that if
for some vectorg andy and some matrix) it can be shown that

dy = Qdx, (71)
then it holds that g
y _
dXT - Q‘ (72)

Derivatives of, or with respect to, matrices are obtainedragsforming the
matrices into vectors using the vec operator. Thus the a@revof m x n matrix
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Y andp x g matrix X is themn x pg matrix

dvecY

dvecX’ (73)

where veéX is short for(vecX)".

Using these rules, the chain rule holds —Yifis a function ofX andX is a

function ofZ, then
dvecY dvecY dvecX

dvecZ ~ dvecX dvecZ’ (74)
Finally, we also use theorem due to Roth (1934) that statdsfth
Y =ABC (75)
it holds that
vecY = (C"®A)ved. (76)

B Appendix: Derivatives of block matrices

The sensitivities ofi; andn, require the derivatives 6f andW, which in turn
require the derivatives of the block matricksM, andR. In (37), the necessary
derivatives ofV andW are given by

dvecV - . dvecM . dvecR

de" = (R Ks+l,c® Ks,c) do + (ISC® Ks,cMKS-FLC) de’ (77)
dvecW ovecA

deT = (K;C® K;C) 06T (78)
dvecW . .+ OvecA

dn} = (Ks,c® Ks7c) dn{ K&,c- (79)

Because of the block structure B&f M, andA differentiation is of interest only
with respect to the component matrices. These derivatarebe obtained (Caswell
in prep.) as follows.
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We write s
A:-Z(E“ ®A;) (80)

whereE;; is asx smatrix with a 1 in the(i, i) position and zeros elsewhere. Then
it can be shown that

dvecA 2 dvecA;

g = i;(IC®K&C®IS) (VecEi @ lcz) — 5o (81)
(Caswell in prep.).
Similarly,
R= zl (Ei=R) ®2)
i=

where nowE;; is ac x ¢ matrix with a 1 in the(i,i) entry and zeros elsewhere.
Then dveck dvecR
vec vecR;
T Z('c@ Ksc®lsi1) (VeCEii ® |s(s+1)) TTI (83)

The block matrixM is not diagonal, but it can be written as
M= (E11®lc) + (E22®1¢) + (E13®G) (84)

where in this casg;j is as x (s+ 1) matrix with a 1 in the(i, j) entry and zeros
elsewhere. The derivative df is

dvecM dvecG

W - (Is+1®KS,C®IC) (VeCE13®|CZ)W. (85)

C Appendix: Example matrices

Transition matrices from the example in Section &4s (9 x 6) matrix with the
following form for our parameter values:
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Ri | O 0
R= 0 | R| O
0 0 | Rs

054 O 0 0 0 0

036 08| O 0 0 0
0 03| O 0 0 0
0 0 063 O 0 0
0 0 027 08| O 0
0 0 0 02| O 0
0 0 0 0 054 O
0 0 0 0 | 0.36 08
0 0 0 0 0 03

(86)

In the example we ignore maternal immunity, vertical traissmon, or vacci-

nation at birth, so the matridl that describes parental effects is simply:

1 0 0|1 0 0|0 0 O
0O 1 0/0 1 0/0 0 O
O 0 1/0 0 1|0 0 O
M = (87)
O 0 0/0 0 0|1 1 1
O 0 0/0 0 0|0 0 O
O 0 0/0 0 0|0 0 O

Epidemic transitions depend on the number of infected idd&ds at time:

Aln@M)] =

Aq[n(t 0
1n()] | (88)
0 | Azn(t)]
o ~0.00361;2-0.0014nz7) 0 0 0 0 0
1—_ (—00036n,-0001402) g 0 0 0
0 006 1 0 0 0
5 0 0 g(—0.0014n;,—0.0036n22) 0 0
0 0 0] 1—&(-000140,-000360:) (g 0
0 0 0 0 007 1
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The overall transition matri® as defined in equation (19) and evaluated at
initial conditions is

0.5394 02997 0 01998 0 02997

0.0006 00003 06294 00002 0 00003
0 0 0.0006 0 054 0
B — (89)
0.3593 07984 0 0 0 0
0.0007 Q0016 02697 Q7992 0 0
0 0 00003 00008 (036 08000
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Figures

susceptibles infectives recovered

Figure 1. Reproduction matriR accounts for the reproduction, survival and
growth. New individuals temporarily show up in extra stafes) before they
are assigned to their epidemic categories.
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juveniles newborns adults
Figure 2: After reproduction, newborn individuals are gasd to their epidemic

categories by the matrid. If there is no vertical transmission, inherited immu-

nity or vaccination at birthd) = 0, h= 0, v= 0) then all newborn individuals will
be susceptible.

vertical inherited
transmission (v) immunity (/)
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Figure 4. Stage-structured SIR model: (a) sensitivity o thquilibrium
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Figure 5: Stage-structured epidemic model with two timéescda) elasticities of
the equilibrium population just before the outbre@k)( (b) elasticity of disease
prevalence. Parameters as in Figure 4; shaded regionsgone to the epidemic
parameters.
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Figure 7. Stage-structured epidemic model with two timéescda) sensitivity of

the equilibrium population just before the outbreék)( (b) sensitivity of disease
prevalence. Parameters as in Figure 4; shaded regionsgone to the epidemic
parameters.
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Figure 8: Stage-structured epidemic model with two timéescga) elasticities of
the equilibrium population just before the outbre@k)( (b) elasticity of disease
prevalence. Parameters as in Figure 4; shaded regionsgone to the epidemic
parameters.
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