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Abstract

Public health related decisions often have to balance the cost of intervention strategies with

the benefit of the reduction in disease burden. While the cost can often be inferred, forward

modelling of the effect of different intervention options is complicated and disease specific.

Here we introduce a package that is aimed to simplify this process. The package allows one

to infer parameters using a Bayesian approach, perform forward modelling of the likely

results of the proposed intervention and finally perform cost effectiveness analysis of the

results. The package is based on a method previously used in the United Kingdom to inform

vaccination strategies for influenza, with extensions to make it easily adaptable to other dis-

eases and data sources.

This is a PLOS Computational Biology Software paper.

Introduction

In-depth cost effectiveness analysis of disease intervention strategies has been difficult to

perform due to a variety of reasons, including the inherent complexity of disease dynamics,

lack of data and difficulty in predicting the success of the proposed interventions. Currently

available tools for analysing epidemiological data mainly focus on statistical analyses and

simple regression models [1–3], which is not sufficient to model the population wide effects

of proposed interventions, which include both direct and indirect effects. The exception

here is amei, an R package for optimising vaccination strategies in using an adaptive man-

agement framework while evaluating costs of an underlying stochastic epidemiological

model [4], but this package mainly relies on the use of a single (high quality) source of infor-

mation. Synthesising information from different sources of data and performing a detailed
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cost effectiveness analysis of control strategies is not supported by the currently available

packages.

In an effort to fill this gap and make sophisticated cost effectiveness analysis methods

more accessible and standardised we have developed an R package that simplifies the process.

Focusing on influenza, we present a package that offers detailed cost effectiveness analyses of

intervention strategies in a Bayesian inference framework that applies evidence synthesis tech-

niques to combine the available evidence from multiple data sources that can be stratified by

age and risk status and combined with age-stratified mixing patterns. The implementation is

based on a Susceptible Exposed Infectious Removed (SEIR) model previously developed for

pandemic influenza [5] and later used for assessing the cost/benefit of changes in the seasonal

influenza vaccine programme in the United Kingdom, and adapted to make it more generally

applicable to other settings [6, 7].

The package is particularly suitable for modelling and evaluating intervention strategies for

directly transmissible diseases that use proxy data for incidence, such as influenza-like-illness

(ILI) counts for influenza and respiratory syncytial virus (RSV). The package deals with the

whole pipeline, starting from re-organising users’ different data sources to standardise their

format to be compatible with the package, to modelling, Bayesian inference, analysing vaccina-

tion scenarios and cost effectiveness. Crucially, it includes a number of high level functions

that can do a particular analysis, and also provides access to the low level functions that are

needed if the user wants to adapt the analysis and tailor it to their specific needs (e.g. user-pro-

vided data may be different than the data we have accessible).

Design and implementation

Fig 1 illustrates the general workflow of the package. The package takes data on the influenza

outbreak and related data, such as contact rates and demographic structure, as its input, which

can then be organised into different age and risk groups. Given a set of parameters and consid-

ering the underlying model, we calculate the likelihood of observing these data. Given the data

and the likelihood function, the package uses an adaptive MCMC algorithm to derive the pos-

terior distribution of parameter values of the underlying epidemiological model. These poste-

rior parameter values can be used to explore alternative intervention strategies, and for the

cost-benefit analysis by using the functionalities of the forward modelling.

Data representation

Data analysed in the package need to be transformed into a standardised format. The default

input is in form of weekly data with each row representing the data for that week. Other dates

can be used when using the lower level functions provided by the package. Columns contain

the data stratified by age group. If the data are also stratified by risk group then the first group

of columns will hold the data for one risk group, stratified by age group. The next set of col-

umns will be the next risk group by age group, etc. The input as used in the examples consist

of (see Fig 1):

• Weekly ILI counts, stratified by age in separate columns.

• Weekly virological data, stratified by age in separate columns.

• Weekly vaccination data, stratified by risk group and by age as explained above.

• Population size by age.

• Contact data by age group. The example data included in the package are based on the

POLYMOD study [8].
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Functionalities

Stratifying the data. General functions are provided as part of the package to stratify

the data and convert them to a suitable formatting for model fitting (e.g stratify_by_
age(. . .)) and easily stratify the data into different user-specified age and risk groups. The

choice of age groups and risk groups is flexible and depends on the data provided and the goal

of the user. For example, for the UK the influenza occurrence data are separated into 5 age

groups, while the vaccination data are divided into 7 different age groups, so it was decided to

model 7 different age groups, but transform them into 5 before performing the fitting [6].

Vaccination scenarios. The package defines vaccination scenarios as a combination of

the effectiveness of the vaccine against the dominant strain and the coverage over time. The

effectiveness of the influenza vaccine is highly dependent on the match between the vaccine

strain and the dominant strain circulating in the population. Influenza vaccine effectiveness

is also age dependent, with the vaccine generally being less effective for the older age groups

(e.g. because of immunosenescence). Vaccine coverage is determined by the vaccination pro-

gramme. In most countries influenza vaccination is aimed at individuals aged 65 years and

Fig 1. Workflow for the fluEvidenceSynthesis package.

https://doi.org/10.1371/journal.pcbi.1005838.g001
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above, and at the high risk groups. In the United States and, more recently, in the UK the sea-

sonal influenza vaccination programme was extended to include healthy children [7, 9]. The

period during which the vaccination programme is carried out is also country-dependent. In

the UK vaccination starts in October and runs until the end of January, with the largest uptake

rate during the first month. The function as.vaccination.calendar(. . .) takes the

effectiveness and coverage by age and risk groups and the dates at which the coverage data

were measured to construct a calendar as used in the epidemiological model.

Epidemiological model. The epidemiological model implemented in the package is an

SEIR model, with two compartments for the Exposed and Infectious states that result in a

more realistic gamma distributed average time for both the Exposed and Infectious states

(rather than an exponentially distributed waiting time with single E and I compartments). The

general model has the following form:

dSik

dt
¼ � liSik

dE1
ik

dt
¼ liSik � g1E1

ik

dE2
ik

dt
¼ g1 ðE1

ik � E2
ikÞ

dI1
ik

dt
¼ g1E2

ik � g2I1
ik

dI2
ik

dt
¼ g2 ðI1

ik � I2
ikÞ

dRik

dt
¼ g2I2

ik

ð1Þ

where Sik is the number of susceptibles in the age group i and risk group k, E1
ik and E2

ik are two

compartments with exposed but not yet infectious individuals of age group i and risk group

k, I1
ik and I2

ik represent infectious individuals, and immune individuals of age group i and risk

group k are given by Rik. The overall rate of loss of latency and infectiousness are respectively

given by γ1/2 and γ2/2, while the age-group-specific force of infection λi is given by

li ¼ si

Xx

j¼1

Xy

k¼1

bi;j ðI
1

jk þ I2

jkÞ ð2Þ

where βi,j is the effective contact rate between individuals in age group i and age group j, and σi

is the susceptibility of the age group i (that can be inferred from serological data) and x and y
are the total number of age groups and risk groups, respectively. The effective contact rate is

the transmission rate (Λ) multiplied with the probability of a contact between a individual in

age group i and one in age group j (Ci,j).

Eq 1 defines the trajectory of the infection for each age and risk group. To implement vacci-

nation in the package we further separate each of the epidemiological compartments (SEEIIR)

in the model (1) into vaccinated and non-vaccinated groups. Non-vaccinated people of age i
and risk k are vaccinated at a given rate (μik) regardless of their epidemiological status. If the

subject has already been exposed or infected, the infection progresses as normal. Depending

on the efficacy of the vaccine (αi), a proportion of vaccinated susceptibles will become immune

(μikαiSik) and the total daily rate with which susceptible individuals become vaccinated and

recovered is μik(Rik + αiSik). If the vaccine is not 100% effective a proportion of vaccinated

fluEvidenceSynthesis: An R package for epidemiological outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005838 November 20, 2017 4 / 12

https://doi.org/10.1371/journal.pcbi.1005838


individuals will become ‘vaccinated susceptibles’ (μik(1 − αi)Sik). For full details of the underly-

ing model see the supplementary information of [6].

Inference. In addition to the numerically optimised epidemiological model we also imple-

mented a highly optimised likelihood function. The basic likelihood function incorporated in

the package has the following form for each age group (i):

Lðnþi ; ni;mij�i;c; yiÞ ¼
X

mþi

Lðnþi ; ni;mijm
þ

i ; yiÞLðm
þ

i ;mij�i;c; yiÞ

The likelihood of the data, given the ODE model, is separated into two parts. First, we assume

that the virologically tested sera (ni) are a subsample of the people identified with an influenza-

like-illness. As such, the number tested positive (nþi ) is distributed as a hypergeometric func-

tion, with the number of people tested (ni), the number of people actually with that strain of

influenza (mþi ) and the total number of people (mi). The second part of the likelihood function

defines how the values mþi and mi depend on the ascertainment probability (�i), external inflow

of influenza (ψ) and the epidemiological model parameters (θi = {Λ, σi, I0}, with I0 the log

transformed initial infected population: I0 ¼ log I1
i ð0Þ). Here, subscript i designates the age

group i and the parameters (�i; ψ; Λ; σi; I0) are inferred from the data. We have no direct data

for the number of people with a particular strain of influenza (mþi ) so we integrate over all pos-

sibilities, resulting in a computationally intensive calculation. For full details of the likelihood

and the method of optimisation see [6].

Finally, an advanced MCMC algorithm is used to generate samples from the posterior dis-

tribution of the parameter values using this likelihood function [[10]; Algorithm 6B].

The use of the hypergeometric distribution and the resulting computational complexity of

the likelihood function above is due to the fact that the source of data on influenza incidence is

dual, composed of the ILI data, which is an umbrella for several respiratory infections and

virology testing which indicates which of these diseases is circulating. The actual incidence of

one particular pathogen can thus only be inferred by combining these two sources. When

direct data on disease prevalence are available the fluEvidenceSynthesis package can

still be used, by replacing the above likelihood function with a simplified likelihood function.

The vignettes of the package provide in-depth information on how to replace the likelihood

function, with a user-specified function.

Forward modelling. The resulting posterior samples of the parameters can be used to

model alternative interventions and explore the changes in the resulting outbreak size. This is

generally done by adapting the previously fitted epidemiological model to account for the new

intervention strategy. This model is then run using the posterior parameter samples and the

final disease burden can be compared under the current scenario and/or under alternative sce-

narios. The disease burden can also be used to calculate the cost and benefits of the alternative

scenarios.

Cost effectiveness. The package provides a number of functions to aid with calculating

the cost effectiveness. Based on existing mortality rate and data on hospitalised cases, the inci-

dence number is transformed into the number of consultations, hospitalisations and deaths

using the function public_health_outcome(.. .). These numbers can then be con-

verted into the costs and the benefits in reduced consultations, hospitalisations and mortality

due to alternative intervention methods. It is also possible to calculate the number of vaccine

doses needed using the vaccine_doses(. . .) function. Some of the rates and associated

costs are country-specific as they depend on the healthcare system and therefore not included

in the package.

fluEvidenceSynthesis: An R package for epidemiological outbreaks
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Results

We present an example examining the potential outbreak size reduction by extending the sea-

sonal vaccination programme to include increased coverage in children aged 5-14 years. In

this example we explore scenarios where either 40% or 80% coverage is achieved in the 5-14

year olds.

Following the workflow laid out in Fig 1 we can divide the needed process as follows:

1. Collect data for each season and subtype

The data available depends on the study area and collection agency, so this step is variable.

Examples of the needed layout using UK data are provided with the package and can be used

to base your data format on.

2. Run inference (for each season and subtype)

Performing the default parameter inference implemented in this package (see [6]) using

user-specified data is straightforward by running the analysis using the inference(. . .)
function, that needs to be run for each season and strain (as illustrated in the R (pseudo)code

example below). Note that for performance reasons it is advised to adapt this pseudocode to

run in parallel for each season and strain.

The inference(. . .) function is a high level function that implements the whole infer-

ence part of the workflow. This function takes all the data (as described earlier in this manu-

script) and returns posterior samples of the parameters. The documentation of the package

also shows how to adapt parts of the inference function for use with a different underlying epi-

demiological model, or different likelihood function. Fig 2 highlights the difference between

our prior distribution of R0 and the posterior distribution of R0 following parameter inference.

In the 2007/08 season the posterior is very similar to the prior. This is probably because in that

season the incidence of H3N2 was very low compared to the other two seasons shown here.

3. Forward modelling

• Define alternative scenario

Any vaccination scenario depends on the efficacy of the vaccine, the total vaccine uptake,

and the relative rate of uptake over time (e.g. during the first month the uptake rate in the UK

is higher than in later months). To model our scenario we scaled the total uptake rate to 40%

and 80%, while keeping the other factors constant. This was achieved by calculating the total

inference.results <- list()

for (season in seasons) {

for (subtype in subtypes) {

inference.results[[season]][[subtype]] <-

inference(demography[[season]], ili[[season]]
[[subtype]], . . .)

}

}

fluEvidenceSynthesis: An R package for epidemiological outbreaks
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uptake rate for the relevant age group (i.e. V =
R

v(t)dt) and scaling up the original uptake rate

to result in a total coverage of Vs = 0.4 or Vs = 0.8 (i.e. v̂ðtÞ ¼ VsvðtÞV).

• Run vaccination scenario for all results with old vs. new scenario

The inference step results in a number of posterior samples for the parameters and contact

data. We can now use these samples and model the outcome of our alternative vaccination sce-

nario. Then we calculate the difference in influenza burden between the original and our alterna-

tive vaccination scenarios. This is done by taking samples from each season and strain combina-

tion and calculating the disease burden over all the seasons/strains of the new scenario relative to

the original scenario (using the vaccination_scenario(. . .) function). The results are

summarized in Fig 3, showing a reduction of influenza cases in both the low and high risk groups

under the new scenario. The magnitude of the reduction is dependent on the level of vaccine

coverage. The higher coverage (80%) results in a reduction of around 5.9 million, while lower

coverage (40%) results in a reduction of influenza cases of approximately 3.5 million (Fig 3).

4. Cost effectiveness

Performing the cost effectiveness analysis requires calculating the costs and benefits of the

proposed intervention. The main cost in increasing vaccination stems from administering

Fig 2. Posterior and prior probability of R0 for different seasons and serotype H3N2.

https://doi.org/10.1371/journal.pcbi.1005838.g002
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additional vaccine doses, which can be calculated with the vaccine_doses(. . .) function.

Resulting benefits will mostly come from associated decreases in the number of consultations,

reduced hospital admissions and finally reduced mortality. Generally, these values are calcu-

lated as the proportion of influenza cases that result in consultations, hospital admissions etc.

The pseudocode below shows how to calculate the cost associated with a new vaccine calendar,

assuming that 7% of infected people visit the GP and 0.2% and 2% of infected individuals are

hospitalised for the low risk and high risk groups respectively.

Fig 3. Reduction in influenza incidence under increased vaccination of the age group between 5 and

15. The orange colour signifies the reduction in patients classified as high risk. The blue colour is the reduction

in the low risk population. The first results correspond to a scenario where 40 percent coverage is achieved,

the second to a coverage of 80.

https://doi.org/10.1371/journal.pcbi.1005838.g003

posterior_cost <- rep(0, nbatch)

for (season in seasons) {

# Vaccine price covers all subtypes

posterior_cost <- posterior_cost +

rep(vaccine_price�

(vaccine doses(proposed_calender) - vaccine doses

(calendar)), nbatch)

fluEvidenceSynthesis: An R package for epidemiological outbreaks
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Another important aspect of cost effectiveness calculations is the reduction of mortality due

to incidence reduction. Fig 4 shows the cost of different vaccination scenarios as a function of

reduction in mortality. More sophisticated cost effectiveness analysis could also take into

account the risk and cost of hospitalisation as well as indirect effects due to increased vaccine-

induced immunity in the population.

Availability and future directions

The R package we presented here was developed to make advanced analysis of disease dynam-

ics more approachable for data analysts and scientists interested in public health related ques-

tions. The package implemented the whole process of preparing the data, running the model,

inferring posterior parameter distributions and performing cost effectiveness analysis. The

approach implemented is based on the method by [6] and [7]. The package is modular in

design, such that the method can be adapted by, for example, changing the underlying epide-

miological model and/or likelihood function. While advanced methods such as implemented

in this package are inherently complex and traditionally applied by specialised researchers, the

package is designed to make the analysis accessible to a wider group of researchers. The pack-

age is freely available under the GPL-3.0 license on github at https://github.com/MJomaba/flu-

evidence-synthesis.

for (subtype in subtypes) {

# Calculate incidence of different outcomes

outcomes <- rowSums(public health outcome(

list(00gp
00 = 0:07, 00

hospital
00 = c(0:002, 0:02)),

vaccination scenario(vaccine calendar ¼ calendar,
. . .), . . .))

# Calculate incidence of different outcomes under proposed policy

new_outc <- rowSums(public health outcome(

list(00gp
00 = 0:07, 00

hospital
00 = c(0:002, 0:02)),

vaccination scenario(vaccine calendar ¼ proposed_
calendar, . . .), . . .))

# Difference of cost under new intervention versus existing policy

posterior_cost <- posterior_cost +

gp_cost�(new_outc$gp - outcomes$gp) +

hospital_cost�(new_outc$hospital - outcomes$hospital)

}

}

posterior_cost <- posterior_cost/length(seasons) # Per season

fluEvidenceSynthesis: An R package for epidemiological outbreaks
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Contact matrix

Currently no explicit model of contact rates is included and inference of the contact matrix is

performed by bootstrapping the available contact data [6]. One model we are working on is to

use demographic data to inform contact inference, similar to the approach explored by [11].

Another simplification in the current approach is the assumption that the contact matrix is

constant throughout the season. Indeed, contact matrices are dependent on behaviour and this

can change during the year [12], either due to external drivers (e.g. school vacation) or in

response to influenza (e.g. staying at home when sick [13]). These changes in behaviour could

then be incorporated into the contact model. Due to the modularity of the package it is possi-

ble to plug-in such a contact model and explore its effect on intervention strategies.

Multi-year

The package simulates each strain and season independently. An interesting possible addition

would be to implement multi-year models, i.e. models where the current state is influenced by

the previous years results. One possible approach would be to use the posterior of the previous

season as a prior for the next season, but that would not capture dynamic effects of alternative

Fig 4. Cost effectiveness analysis showing the vaccine cost by reduction in mortality under two

vaccination scenarios, taking into account uncertainty in vaccine cost, influenza incidence and death

risk. The colours represent the uncertainty around the different scenarios. The lines represent two potential

thresholds: (1) for a cost of up to 1000 for each life saved both programmes are not cost effective, (2) for a

cost up to 10,000 per life saved both programmes are likely to be cost effective. The parameter values used in

this figure (cost of vaccine: 17 ± 2.5 and mortality risk: 0.0025 ± 0.0005) were chosen for illustrative purposes

only and should not be taken as realistic values.

https://doi.org/10.1371/journal.pcbi.1005838.g004
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vaccination strategies. Capturing long-term dynamic effects requires an explicit multi-year

epidemiological model, which introduces challenges of modelling antigenic evolution of anti-

genic strains as well as waning of immunity [14–16]. Such a model would need to be calibrated

jointly to multiple sources of data (e.g. DNA sequences, syndromic surveillance, serology,

demography) [17].

Beyond influenza

The package has been developed with a focus on influenza data, but could potentially be

adapted to predict the impact and cost effectiveness for a range of interventions for other infec-

tious diseases. The parts that are disease specific are the likelihood function and the transmis-

sion model. The transmission model is an SEIR model which can be used to capture a wide

variety of diseases. If this model is not suitable for your analysis then it is of course possible to

replace it with another model while still using the other parts of the package.

The likelihood function is suitable for any disease where most of the data on disease occur-

rence is a proxy for the actual occurrence, augmented with a smaller source of direct data

(virological). If more direct data are available then it might be appropriate to replace the cur-

rent likelihood function with a (simplified) likelihood that is only based on the direct data.

Conclusion

The fluEvidenceSynthesis package implements the needed pipeline to go from raw

epidemiological data to a cost effectiveness analysis based on Bayesian inference methods. The

workflow implemented is based on the analysis used to predict the cost effectiveness of paedi-

atric vaccination in the UK [6,7]. The package itself has been successfully used in further analy-

ses, most notably [18] and [19]. Feedback from those analyses has been used to improve the

package. It is implemented as a series of loosely connected steps and allows the researcher to

replace any of these phases with their own method.
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