424 research outputs found

    New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements

    Get PDF
    The low-temperature heat capacities of nickel titanate (NiTiO3), cobalt titanate (CoTiO3), and cobalt carbonate (CoCO3) were measured between 2 and 300 K, and thermochemical functions were derived from the results. Our new data show previously unknown low-temperature lambda-shaped heat capacity anomalies peaking at 37 K for CoTiO3 and 26 K for NiTiO3. From our data we calculate standard molar entropies (298.15 K) for NiTiO3 of 90.9 ± 0.7 J mol-1 K-1 and for CoTiO3 of 94.4 ± 0.8 J mol-1 K-1. For CoCO3, we find only a small broad heat capacity anomaly, peaking at about 31 K. From our data, we suggest a new standard entropy (298.15 K) for CoCO3 of 88.9 ± 0.7 J mol-1 K-1

    Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Get PDF
    © 2018 Elsevier Ltd Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter–mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter–mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine – δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine–spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine–spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult–to–apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet–bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks, the clearly resolvable inter–mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited

    The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths

    Get PDF
    We investigate the potential to use concentrations and zoning patterns of phosphorus (P) in clinopyroxene as indicators of the rates of igneous and metasomatic processes, comparable to recent applications of P in olivine but applicable to more evolved rocks and lower temperatures of crystallization. Few high-P pyroxenes have been previously reported, and none have been analyzed in detail for the mechanism of P enrichment or the implications for mineral growth kinetics. Here, we report the discovery and characteristics of exotic phosphorus-rich secondary clinopyroxene in glassy pockets and veins in composite mantle xenoliths from the Cima Volcanic Field (California, USA) and the Middle Atlas Mountains (Morocco, West Africa). These glass-bearing xenoliths preserve evidence of melt infiltration events and the contrasting behavior of P in their pyroxene crystals constrains the different rates of reaction and extents of equilibration that characterized infiltration in each setting. We report optical petrography and chemical analysis of glasses and minerals for major elements by electron microprobe microanalyzer and trace elements by laser-ablation Inductively Coupled Plasma Mass Spectrometry. The Cima Volcanic Field specimen shows one end-member behavior, with unzoned P-rich clinopyroxene in a melt pocket. We attribute this occurrence to a slow crystallization process that occurred after the melt temperature reached near-equilibrium with the host rock and during which the P concentration in the melt was buffered by apatite saturation. In the Morocco xenolith, by contrast, clinopyroxene exhibits zonation with P increasing all the way to the rim, in contact with the glass. We ascribe this feature to a rapid growth process in which excess P was incorporated into the growing clinopyroxene from a diffusive boundary layer. We demonstrate quantitative agreement between the enrichment of P and other trace elements and their expected diffusion and partitioning behavior during rapid growth. We suggest that P has not been widely reported in clinopyroxene in large part because it has rarely been looked for and that its analysis offers considerable promise as a kinetic indicator both in xenoliths and volcanic rocks

    The thermal equation of state of FeTiO_3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

    Get PDF
    We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO_3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe^(3+) both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V_0 = 314.75 ± 0.23 (1 ) Å^3] is significantly smaller than that of the synthetic sample [V_0 = 319.12 ± 0.26 Å^3]. The difference can be attributed to the presence of impurities and Fe^(3+) in the natural sample. The 1 bar isothermal bulk moduli K_(T0) for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K_0' = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role

    PHOSPHORUS ZONING FROM SECONDARY OLIVINE IN MANTLE XENOLITH FROM MIDDLE ATLAS MOUNTAINS (MOROCCO, AFRICA): IMPLICATIONS FOR CRYSTAL GROWTH KINETICS

    Get PDF
    Συλλέχθηκαν δείγματα μανδυακών ξενολίθων σε επαφή με βασάλτες από το μάαρ Tafraoute του Μαρόκκου. Διαπιστώθηκε η ύπαρξη φλεβών τήγματος που τέμνουν την πρωτογενή στρωμάτωση και σχιστότητα. Για τον πετρογραφικό και χημικό χαρακτηρισμό των φλεβών τήγματος, εφαρμόστηκαν οι τεχνικές της οπτικής μικροσκοπίας και ηλεκτρονικής μικροανάλυσης. Οι φλέβες αποτελούνται από ύελο και κρυστάλλους ολιβίνη, κλινοπυροξένου, πλαγιοκλάστου, σπινελίου και απατίτη. Ο ολιβίνης είναι πλούσιος στην περιφέρειά του σε φώσφορο ~0,3 %κ.β (εκπεφρασμένο ως P2O5). Correlations between Al and P, as well as experimentally determined partition coefficient for P, point towards non-equilibrium partitioning during rapid crystal growth at the end of crystallization. Βασιζόμενοι σε συντελεστές κατανομής φωσφόρου μεταξύ ολιβίνη και τήγματος, και τη σχέση του αργιλίου με το φώσφορο, 1924 καταλήγουμε σε κατανομή σε συνθήκες μη ισορροπίας κατά τη διάρκεια ταχύτατης ανάπτυξης στο τέλος της κρυστάλλωσηςMantle xenolith samples in contact with basalt flows were collected from the Tafraoute maar in Morocco. Discrete melt veins are present in one xenolith sample, crosscutting primary layering and foliation. We used both optical microscopy and electron microprobe analysis to characterize the glasses and minerals in the melt veins. The melt veins consist of glass and crystals of olivine, clinopyroxene, plagioclase, spinel and apatite. The olivine in the melt veins is quite distinct from the same mineral within the matrix due to its characteristic P-enriched rims (up to 0.3 wt.%). Correlations between Al and P, as well as experimentally determined partition coefficient for P, point towards non-equilibrium partitioning during rapid crystal growth at the end of crystallization

    Molecular spin resonance in the geometrically frustrated MgCr2O4 magnet by inelastic neutron scattering

    Full text link
    We measured two magnetic modes with finite and discrete energies in an antiferromagnetic ordered phase of a geometrically frustrated magnet MgCr2O4 by single-crystal inelastic neutron scattering, and clarified the spatial spin correlations of the two levels: one is an antiferromagnetic hexamer and the other is an antiferromagnetic heptamer. Since these correlation types are emblematic of quasielastic scattering with geometric frustration, our results indicate instantaneous suppression of lattice distortion in an ordered phase by spin-lattice coupling, probably also supported by orbital and charge. The common features in the two levels, intermolecular independence and discreteness of energy, suggest that the spin molecules are interpreted as quasiparticles (elementary excitations with energy quantum) of highly frustrated spins, in analogy with the Fermi liquid approximation.Comment: 2 figures (13 panels

    Effects of External Vibration Stimulation on Internal Rotation Range of Motion and Hamstring Strength

    Get PDF
    Introduction Whole body and localized vibration therapy have gained increased use in the fitness community, clinical setting, and research Efficacy as a modality option is yet to be determined Objective Evaluate the effects of localized vibration treatment (LVT) to the sacral region on shoulder internal rotation (IR) range of motion (ROM) and isometric hamstring strength Participants 50 Concordia University DPT Students 28 females 22 males Age: 22-33 (Avg. 24) Methods Baseline dominant extremity shoulder IR ROM measured in supine with manual goniometry Baseline hamstring strength measurements in prone using MicroFETTM (hand held dynamometer), taken post 1 practice test Therapeutic intervention: application of LVT using the Hypervolt PlusR tool to 5 predetermined landmarks on sacral region for 40 seconds total Post-therapeutic intervention measurements Prone hamstring strength using MicroFETTM Supine shoulder IR ROM with manual goniometry Results Statistical significance (p \u3c 0.05) was demonstrated for increased shoulder IR (mean difference 3.5 degrees) Hamstring strength did not rise to statistical significance (p=0.09) Conclusion Vibration stimulation to neural dense area such as the sacral region can improve shoulder internal rotation range of motion. Clinical Relevance Potential acute gains in ROM and strength to allow for greater effectiveness in subsequent PT interventions In sport training, LVT could be used as a quick and effective tool for increased athletic performance Future Research Procedural modifications may improve outcomes Pelvis stabilization methods may demonstrate clinically significant improvements in hamstring strength Incremental testing post LVT delivery to assess duration of effect

    Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca5(PO4)3Cl) using the flux growth method

    Full text link
    We present a new strategy on how to synthesize trace-element bearing (REE, Sr) chlorapatites Ca5(PO4)3Cl using the flux growth method. Synthetic apatites were up to several mm long, light blue in colour. The apatites were characterized using XRD, electron microprobe and laser ablation ICP-MS (LA-ICPMS) techniques and contained several hundred μg/g La, Ce, Pr, Sm, Gd and Lu and about 1700 μg/g Sr. The analyses indicate that apatites were homogenous (within the uncertainties) for major and trace elements
    corecore