487 research outputs found

    High degree graphs contain large-star factors

    Full text link
    We show that any finite simple graph with minimum degree dd contains a spanning star forest in which every connected component is of size at least Ω((d/log⁥d)1/3)\Omega((d/\log d)^{1/3}). This settles a problem of J. Kratochvil

    Systems of Linear Equations over F2\mathbb{F}_2 and Problems Parameterized Above Average

    Full text link
    In the problem Max Lin, we are given a system Az=bAz=b of mm linear equations with nn variables over F2\mathbb{F}_2 in which each equation is assigned a positive weight and we wish to find an assignment of values to the variables that maximizes the excess, which is the total weight of satisfied equations minus the total weight of falsified equations. Using an algebraic approach, we obtain a lower bound for the maximum excess. Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin introduced by Mahajan et al. (Proc. IWPEC'06 and J. Comput. Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are to decide whether the maximum excess is at least kk, where kk is the parameter. It is not hard to see that we may assume that no two equations in Az=bAz=b have the same left-hand side and n=rankAn={\rm rank A}. Using our maximum excess results, we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable for a wide special case: m≀2p(n)m\le 2^{p(n)} for an arbitrary fixed function p(n)=o(n)p(n)=o(n). Max rr-Lin AA is a special case of Max Lin AA, where each equation has at most rr variables. In Max Exact rr-SAT AA we are given a multiset of mm clauses on nn variables such that each clause has rr variables and asked whether there is a truth assignment to the nn variables that satisfies at least (1−2−r)m+k2−r(1-2^{-r})m + k2^{-r} clauses. Using our maximum excess results, we prove that for each fixed r≄2r\ge 2, Max rr-Lin AA and Max Exact rr-SAT AA can be solved in time 2O(klog⁥k)+mO(1).2^{O(k \log k)}+m^{O(1)}. This improves 2O(k2)+mO(1)2^{O(k^2)}+m^{O(1)}-time algorithms for the two problems obtained by Gutin et al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively

    Partial Covering Arrays: Algorithms and Asymptotics

    Full text link
    A covering array CA(N;t,k,v)\mathsf{CA}(N;t,k,v) is an N×kN\times k array with entries in {1,2,
,v}\{1, 2, \ldots , v\}, for which every N×tN\times t subarray contains each tt-tuple of {1,2,
,v}t\{1, 2, \ldots , v\}^t among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound CAN(t,k,v)\mathsf{CAN}(t,k,v), the minimum number NN of rows of a CA(N;t,k,v)\mathsf{CA}(N;t,k,v). The well known bound CAN(t,k,v)=O((t−1)vtlog⁥k)\mathsf{CAN}(t,k,v)=O((t-1)v^t\log k) is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set {1,2,
,v}t\{1, 2, \ldots , v\}^t need only be contained among the rows of at least (1−ϔ)(kt)(1-\epsilon)\binom{k}{t} of the N×tN\times t subarrays and (2) the rows of every N×tN\times t subarray need only contain a (large) subset of {1,2,
,v}t\{1, 2, \ldots , v\}^t. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time

    Maximum union-free subfamilies

    Get PDF
    An old problem of Moser asks: how large of a union-free subfamily does every family of m sets have? A family of sets is called union-free if there are no three distinct sets in the family such that the union of two of the sets is equal to the third set. We show that every family of m sets contains a union-free subfamily of size at least \lfloor \sqrt{4m+1}\rfloor - 1 and that this bound is tight. This solves Moser's problem and proves a conjecture of Erd\H{o}s and Shelah from 1972. More generally, a family of sets is a-union-free if there are no a+1 distinct sets in the family such that one of them is equal to the union of a others. We determine up to an absolute multiplicative constant factor the size of the largest guaranteed a-union-free subfamily of a family of m sets. Our result verifies in a strong form a conjecture of Barat, F\"{u}redi, Kantor, Kim and Patkos.Comment: 10 page

    Approximation algorithms for connected dominating sets

    Full text link

    A verified algorithm enumerating event structures

    Get PDF
    An event structure is a mathematical abstraction modeling concepts as causality, conflict and concurrency between events. While many other mathematical structures, including groups, topological spaces, rings, abound with algorithms and formulas to generate, enumerate and count particular sets of their members, no algorithm or formulas are known to generate or count all the possible event structures over af inite set of events. We present an algorithm to generate such a family, along with a functional implementation verified using Isabelle/HOL. As byproducts, we obtain a verified enumeration of all possible preorders and partial orders. While the integer sequences counting preorders and partial orders are already listed on OEIS (On-line Encyclopedia of Integer Sequences), the one counting event structures is not. We therefore used our algorithm to submit a formally verified addition, which has been successfully reviewed and is now part of the OEIS.Postprin

    Translating promising strategies for bowel and bladder management in spinal cord injury

    Get PDF
    Loss of control over voiding following spinal cord injury (SCI) impacts autonomy, participation and dignity, and can cause life-threatening complications. The importance of SCI bowel and bladder dysfunction warrants significantly more attention from researchers in the field. To address this gap, key SCI clinicians, researchers, government and private funding organizations met to share knowledge and examine emerging approaches. This report reviews recommendations from this effort to identify and prioritize near-term treatment, investigational and translational approaches to addressing the pressing needs of people with SCI
    • 

    corecore