research

Systems of Linear Equations over F2\mathbb{F}_2 and Problems Parameterized Above Average

Abstract

In the problem Max Lin, we are given a system Az=bAz=b of mm linear equations with nn variables over F2\mathbb{F}_2 in which each equation is assigned a positive weight and we wish to find an assignment of values to the variables that maximizes the excess, which is the total weight of satisfied equations minus the total weight of falsified equations. Using an algebraic approach, we obtain a lower bound for the maximum excess. Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin introduced by Mahajan et al. (Proc. IWPEC'06 and J. Comput. Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are to decide whether the maximum excess is at least kk, where kk is the parameter. It is not hard to see that we may assume that no two equations in Az=bAz=b have the same left-hand side and n=rankAn={\rm rank A}. Using our maximum excess results, we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable for a wide special case: m2p(n)m\le 2^{p(n)} for an arbitrary fixed function p(n)=o(n)p(n)=o(n). Max rr-Lin AA is a special case of Max Lin AA, where each equation has at most rr variables. In Max Exact rr-SAT AA we are given a multiset of mm clauses on nn variables such that each clause has rr variables and asked whether there is a truth assignment to the nn variables that satisfies at least (12r)m+k2r(1-2^{-r})m + k2^{-r} clauses. Using our maximum excess results, we prove that for each fixed r2r\ge 2, Max rr-Lin AA and Max Exact rr-SAT AA can be solved in time 2O(klogk)+mO(1).2^{O(k \log k)}+m^{O(1)}. This improves 2O(k2)+mO(1)2^{O(k^2)}+m^{O(1)}-time algorithms for the two problems obtained by Gutin et al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019