37 research outputs found

    Characterizing Olfactory Function in Children with Autism Spectrum Disorder and Children with Sensory Processing Dysfunction

    No full text
    Abnormalities in olfactory function have been identified in a number of neurological and psychiatric disorders, including Parkinson’s disease and schizophrenia. However, little is known about olfactory function in autism spectrum disorder (ASD). The present study aims to assess the olfactory profiles of children with ASD, compared to an age- and sex-matched comparison group of typically developing children and a second clinical control group consisting of non-ASD children with sensory processing dysfunction (SPD). Participants completed a battery of sensory and behavioral assessments including olfactory tasks (Sniffin’ Sticks Threshold Test and self-reported valence ratings for two target odorants (phenylethyl alcohol and vanillin) and the University of Pennsylvania Smell Identification Test), and an autism evaluation (Autism Diagnostic Observation Schedule-2). Children with ASD showed intact odor detection with reduced odor identification ability. Poor odor identification was significantly correlated with autism symptom severity. Children with SPD demonstrated reduced odor detection and identification ability. These findings provide evidence for differential patterns of smell processing among ASD and non-ASD neurodevelopmental disorders. Future studies are needed to determine whether the association of impaired olfaction and increased autism symptoms is due to shared etiology

    Posterior Cingulate Lactate as a Metabolic Biomarker in Amnestic Mild Cognitive Impairment

    No full text
    Mitochondrial dysfunction represents a central factor within the pathogenesis of the Alzheimer’s disease (AD) spectrum. We hypothesized that in vivo measurements of lactate (lac), a by-product of glycolysis, would correlate with functional impairment and measures of brain health in a cohort of 15 amnestic mild cognitive impairment (aMCI) individuals. Lac was quantified from the precuneus/posterior cingulate (PPC) using 2-dimensional J-resolved magnetic resonance spectroscopy (MRS). Additionally, standard behavioral and imaging markers of aMCI disease progression were acquired. PPC lac was negatively correlated with performance on the Wechsler logical memory tests and on the minimental state examination even after accounting for gray matter, cerebral spinal fluid volume, and age. No such relationships were observed between lac and performance on nonmemory tests. Significant negative relationships were also noted between PPC lac and hippocampal volume and PPC functional connectivity. Together, these results reveal that aMCI individuals with a greater disease progression have increased concentrations of PPC lac. Because lac is upregulated as a compensatory response to mitochondrial impairment, we propose that J-resolved MRS of lac is a noninvasive, surrogate biomarker of impaired metabolic function and would provide a useful means of tracking mitochondrial function during therapeutic trials targeting brain metabolism

    Conduction velocity, G-ratio, and extracellular water as microstructural characteristics of autism spectrum disorder.

    No full text
    The neuronal differences contributing to the etiology of autism spectrum disorder (ASD) are still not well defined. Previous studies have suggested that myelin and axons are disrupted during development in ASD. By combining structural and diffusion MRI techniques, myelin and axons can be assessed using extracellular water, aggregate g-ratio, and a new approach to calculating axonal conduction velocity termed aggregate conduction velocity, which is related to the capacity of the axon to carry information. In this study, several innovative cellular microstructural methods, as measured from magnetic resonance imaging (MRI), are combined to characterize differences between ASD and typically developing adolescent participants in a large cohort. We first examine the relationship between each metric, including microstructural measurements of axonal and intracellular diffusion and the T1w/T2w ratio. We then demonstrate the sensitivity of these metrics by characterizing differences between ASD and neurotypical participants, finding widespread increases in extracellular water in the cortex and decreases in aggregate g-ratio and aggregate conduction velocity throughout the cortex, subcortex, and white matter skeleton. We finally provide evidence that these microstructural differences are associated with higher scores on the Social Communication Questionnaire (SCQ) a commonly used diagnostic tool to assess ASD. This study is the first to reveal that ASD involves MRI-measurable in vivo differences of myelin and axonal development with implications for neuronal and behavioral function. We also introduce a novel formulation for calculating aggregate conduction velocity, that is highly sensitive to these changes. We conclude that ASD may be characterized by otherwise intact structural connectivity but that functional connectivity may be attenuated by network properties affecting neural transmission speed. This effect may explain the putative reliance on local connectivity in contrast to more distal connectivity observed in ASD

    All ICA p-values before and after adjustment.

    No full text
    The neuronal differences contributing to the etiology of autism spectrum disorder (ASD) are still not well defined. Previous studies have suggested that myelin and axons are disrupted during development in ASD. By combining structural and diffusion MRI techniques, myelin and axons can be assessed using extracellular water, aggregate g-ratio, and a new approach to calculating axonal conduction velocity termed aggregate conduction velocity, which is related to the capacity of the axon to carry information. In this study, several innovative cellular microstructural methods, as measured from magnetic resonance imaging (MRI), are combined to characterize differences between ASD and typically developing adolescent participants in a large cohort. We first examine the relationship between each metric, including microstructural measurements of axonal and intracellular diffusion and the T1w/T2w ratio. We then demonstrate the sensitivity of these metrics by characterizing differences between ASD and neurotypical participants, finding widespread increases in extracellular water in the cortex and decreases in aggregate g-ratio and aggregate conduction velocity throughout the cortex, subcortex, and white matter skeleton. We finally provide evidence that these microstructural differences are associated with higher scores on the Social Communication Questionnaire (SCQ) a commonly used diagnostic tool to assess ASD. This study is the first to reveal that ASD involves MRI-measurable in vivo differences of myelin and axonal development with implications for neuronal and behavioral function. We also introduce a novel formulation for calculating aggregate conduction velocity, that is highly sensitive to these changes. We conclude that ASD may be characterized by otherwise intact structural connectivity but that functional connectivity may be attenuated by network properties affecting neural transmission speed. This effect may explain the putative reliance on local connectivity in contrast to more distal connectivity observed in ASD.</div

    ROC analysis of the 3 microstructural metrics measured within the composite ROIs (axonal WM ROIs and cortical ROIs, from the JHU WM atlas and Destrieux atlas) including AUC calculation.

    No full text
    The same linear model as the ROI analysis was used to predict classification of subject diagnosis. Analysis indicated that ECI signal fraction within the composite WM ROI had the highest sensitivity and specificity to subject diagnosis, followed by aggregate conduction velocity within the composite WM ROI and ECI within the composite cortical ROI. Note that aggregate g-ratio had a sensitivity and specificity of approximately chance within the composite cortical ROI however this ROI was not statistically significant in the primary regional analysis.</p

    Processing pipeline.

    No full text
    Simple flow diagram displaying which imaging metrics contributed to which output metrics. Fiber density cross-section (FDC) was derived from WM-FODs as part of a fixel analysis pipeline, then summed voxel-wise as an intra-axonal volume fraction (AVF) estimate while T1W/T2W ratio was used as a myelin volume fraction (MVF) for the calculation of g-ratio and conduction velocity. It should also be noted that 3T-CSD metrics were separately registered to the MNI space atlases via a different procedure than the metrics derived from T1W/T2W ratio.</p

    Charts displaying relationship between microstructural metrics with significant ROIs in composite ROIs, colored by ASD diagnosis.

    No full text
    The directions of the associations were consistent across all significant ROIs in each microstructural metric. The strongest associations were found in extracellular water metrics in cortical ROIs and aggregate conduction velocity metrics. When examined separately within diagnosis group there was no significant relationship between Social Communication Questionnaire Total Score and brain microstructure in either composite ROI.</p
    corecore