30 research outputs found

    Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland

    Get PDF
    Recent Icelandic rifting events have illuminated the roles of centralized crustal magma reservoirs and lateral magma transport1,2,3,4, important characteristics of mid-ocean ridge magmatism1,5. A consequence of such shallow crustal processing of magmas4,5 is the overprinting of signatures that trace the origin, evolution and transport of melts in the uppermost mantle and lowermost crust6,7. Here we present unique insights into processes occurring in this zone from integrated petrologic and geochemical studies of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula in Iceland. Geochemical analyses of basalts erupted during the first 50 days of the eruption, combined with associated gas emissions, reveal direct sourcing from a near-Moho magma storage zone. Geochemical proxies, which signify different mantle compositions and melting conditions, changed at a rate unparalleled for individual basaltic eruptions globally. Initially, the erupted lava was dominated by melts sourced from the shallowest mantle but over the following three weeks became increasingly dominated by magmas generated at a greater depth. This exceptionally rapid trend in erupted compositions provides an unprecedented temporal record of magma mixing that filters the mantle signal, consistent with processing in near-Moho melt lenses containing 107–108 m3 of basaltic magma. Exposing previously inaccessible parts of this key magma processing zone to near-real-time investigations provides new insights into the timescales and operational mode of basaltic magma systems

    Big data for bipolar disorder

    Get PDF

    Ion homeostasis in the Chloroplast

    Full text link
    peer reviewedThe chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis

    The Reciprocal Interaction Between Sleep and Alzheimer’s Disease

    No full text
    It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly

    Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    No full text
    Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor and Ypsilanti area in Michigan is used as the basis for bus system modeling. Results show that the wirelessly charged battery can be downsized to 27–44% of a plug-in charged battery. The associated reduction of 12–16% in bus weight for the wireless buses can induce a reduction of 5.4–7.0% in battery-to-wheel energy consumption. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than the plug-in charging system in the total life cycle. To further improve the energy and environmental performance of a wireless charging electric bus system, it is important to focus on key parameters including carbon intensity of the electric grid and wireless charging efficiency. If the wireless charging efficiency is improved to the same level as the assumed plug-in charging efficiency (90%), the difference of life cycle greenhouse gas emissions between the two systems can increase to 6.3%

    A magnetic non-reciprocal isolator for broadband terahertz operation

    Get PDF
    A Faraday isolator is an electromagnetic non-reciprocal device, a key element in photonics. It is required to shield electromagnetic sources against the effect of back-reflected light, as well as to limit the detrimental effect of back-propagating spontaneous emissions. A common isolator variant, the circulator, is widely used to obtain a complete separation between forward- and backward-propagating waves, thus enabling the realization of a desired transfer function in reflection only. Here we demonstrate a non-reciprocal terahertz Faraday isolator, operating on a bandwidth exceeding one decade of frequency, a necessary requirement to achieve isolation with the (few-cycle) pulses generated by broadband sources. The exploited medium allows a broadband rotation, up to 194�/T, obtained using a SrFe12O19 terahertz transparent permanent magnet. This in turn enables the design of a stand-alone complete terahertz isolator without resorting to an external magnetic field bias, as opposed to all the optical isolators realized so far
    corecore