1,031 research outputs found

    Universality Class of Thermally Diluted Ising Systems at Criticality

    Full text link
    The universality class of thermally diluted Ising systems, in which the realization of the disposition of magnetic atoms and vacancies is taken from the local distribution of spins in the pure original Ising model at criticality, is investigated by finite size scaling techniques using the Monte Carlo method. We find that the critical temperature, the critical exponents and therefore the universality class of these thermally diluted Ising systems depart markedly from the ones of short range correlated disordered systems. Our results agree fairly well with theoretical predictions previously made by Weinrib and Halperin for systems with long range correlated disorder.Comment: 7 pages, 6 figures, RevTe

    Abdominal fat and risk of impaired lung function and asthma in children:A population-based prospective cohort study

    Get PDF
    Background: Obesity, specifically abdominal adiposity, is associated with increased risks of lung function impairment and asthma in children, but potential adverse effects among adolescents are unknown. We hypothesized that elevated amounts of specific abdominal fat depots during childhood and adolescence may lead to adverse respiratory outcomes in adolescents. Methods:In a population-based prospective cohort study among 2877 children at 13 years, we measured specific abdominal fat depots including subcutaneous fat mass and visceral fat mass by magnetic resonance imaging. Lung function was measured by spirometry, and current asthma by a questionnaire. Conditional regression analyses were used to examine the associations of abdominal fat depots with respiratory outcomes in adolescence. Results: After adjustment for confounders and child's body mass index, higher subcutaneous and visceral fat mass index at age 13 years, independent of these measures at earlier age, were associated with lower FEV1, FEV1/FVC, and FEF75 (range Z-score difference (95% CI): −0.10 (−0.15, −0.06) to −0.06 (−0.11, −0.01)). Also, an increase in subcutaneous and visceral fat between ages 10 and 13 years was associated with a decrease in FEV1, FEV1/FVC, and FEF75 during the same period. No associations of abdominal fat depots with asthma were observed. Conclusion: Adolescents with higher amounts of subcutaneous and visceral fat, independent of that at an earlier age and body mass index, have an increased risk of lung function impairment.</p

    Field and angular dependence of the Sommerfeld coefficient in Al-doped MgB2 single crystals

    Get PDF
    International audienceThe angular and field dependence of the Sommerfeld coefficient = lim Cel /T T→0 Cel being the electronic contribution to the specific heat has been measured in Al-doped MgB2 single crystals for x=0, x=0.1, and x 0.2 . We show that the decomposition previously introduced to describe H, where is the angle between the applied field and the c axis in pure samples Phys. Rev. Lett. 98, 137001 2007 is well adapted to doped samples: e.g., the contribution of the band to the specific heat is proportional to B/Bc2 whereas the contribution of the band is isotropic but highly nonlinear in field. We hence present the evolution of the coherence lengths of the two bands and corresponding Fermi velocities with doping

    Star-graph expansions for bond-diluted Potts models

    Full text link
    We derive high-temperature series expansions for the free energy and the susceptibility of random-bond qq-state Potts models on hypercubic lattices using a star-graph expansion technique. This method enables the exact calculation of quenched disorder averages for arbitrary uncorrelated coupling distributions. Moreover, we can keep the disorder strength pp as well as the dimension dd as symbolic parameters. By applying several series analysis techniques to the new series expansions, one can scan large regions of the (p,d)(p,d) parameter space for any value of qq. For the bond-diluted 4-state Potts model in three dimensions, which exhibits a rather strong first-order phase transition in the undiluted case, we present results for the transition temperature and the effective critical exponent γ\gamma as a function of pp as obtained from the analysis of susceptibility series up to order 18. A comparison with recent Monte Carlo data (Chatelain {\em et al.}, Phys. Rev. E64, 036120(2001)) shows signals for the softening to a second-order transition at finite disorder strength.Comment: 8 pages, 6 figure

    AC Microcalorimetry of Superconducting MgCNi3 Single Crystals

    Get PDF
    Proceedings of the CSMAG'07 Conference, Kosice, July 9-12, 2007International audienceThe low-temperature speci¯c heat of single-crystal samples of super- conducting MgCNi3 with typical dimensions 200 ¹m were measured for the ¯rst time. A computer controlled ac microcalorimeter using an optical ¯ber and an infrared light-emitting diode as the heat source was used down to 2 K at magnetic ¯elds up to 8 T. The speci¯c heat data suggest a moderate coupling in MgCNi3

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
    corecore