1,247 research outputs found
Modified mode-expansion on a BPS wall related to the nonlinear realization
We propose a modified mode-expansion of the bulk fields in a BPS domain wall
background to obtain the effective theory on the wall. The broken SUSY is
nonlinearly realized on each mode defined by our mode-expansion. Our work
clarifies a relation between two different approaches to derive the effective
theory on a BPS wall, {\it i.e.} the nonlinear realization approach and the
mode-expansion approach. We also discuss a further modification that respects
the Lorentz and symmetries broken by the wall.Comment: LaTeX file, 21 pages, no figure
Flavour physics of the RS model with KK masses reachable at LHC
The version of the higher-dimensional Randall-Sundrum (RS) model with matter
in the bulk, which addresses the gauge hierarchy problem, has additional
attractive features. In particular, it provides an intrinsic geometrical
mechanism that can explain the origin of the large mass hierarchies among the
Standard Model fermions. Within this context, a good solution for the gauge
hierarchy problem corresponds to low masses for the Kaluza-Klein (KK)
excitations of the gauge bosons. Some scenarios have been proposed in order to
render these low masses (down to a few TeV) consistent with precision
electroweak measurements. Here, we give specific and complete realizations of
this RS version with small KK masses, down to 1 TeV, which are consistent with
the entire structure of the fermions in flavour space: (1) all the last
experimental data on quark/lepton masses and mixing angles (including massive
neutrinos of Dirac type) are reproduced, (2) flavour changing neutral current
constraints are satisfied and (3) the effective suppression scales of
non-renormalizable interactions (in the physical basis) are within the bounds
set by low energy flavour phenomenology. Our result, on the possibility of
having KK gauge boson modes as light as a few TeV, constitutes one of the first
theoretical motivations for experimental searches of direct signatures at the
LHC collider, of this interesting version of the RS model which accommodates
fermion masses.Comment: 27 pages, Latex file. References and comments adde
Reduction of myocardial infarction by postischemic administration of the calpain inhibitor A-705253 in comparison to the Na(+)/H(+) exchange inhibitor Cariporide (R) in isolated perfused rabbit hearts
The calpain inhibitor A-705253 and the Na(+)/H(+) exchange inhibitor Cariporide (R) were studied in isolated perfused rabbit hearts subjected to 60 min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion. The inhibitors were added to the perfusion fluid solely or in combination at the beginning of reperfusion. Hemodynamic monitoring and biochemical analysis of perfusion fluid from the coronary outflow were performed. Myocardial infarct size and area at risk (transiently not perfused myocardium) were determined from left ventricular slices after a special staining procedure with Evans blue and 2,3,5-triphenyltetrazolium chloride. The infarcted area (dead myocardium) was 72.7 +/- 4.0% of the area at risk in untreated controls, but was significantly smaller in the presence of the inhibitors. The largest effect was observed with 10(-6) M A-705253, which reduced the infarcted area to 49.2 +/- 4.1% of the area at risk, corresponding to a reduction of 33.6%. Cariporide (R) at 10(-6) M reduced the infarct size to the same extent. The combination of both inhibitors, however, did not further improve cardioprotection. No significant difference was observed between the experimental groups in coronary perfusion, left ventricular pressure, heart rate, or in the release of lactate dehydrogenase and creatine kinase from heart muscle
Successful Yukawa structures in Warped Extra Dimensions
For a RS model, with SM fields in the bulk and the Higgs boson on the
TeV-brane, we suggest two specific structures for the Yukawa couplings, one
based on a permutation symmetry and the other on the Universal Strength of
Yukawa couplings hypothesis (USY). In USY, all Yukawa couplings have equal
strength and the difference in the Yukawa structure lies in some complex phase.
In both scenarios, all Yukawa couplings are of the same order of magnitude.
Thus, the main features of the fermion hierarchies are explained through the RS
geometrical mechanism, and not because some Yukawa coupling is extremely small.
We find that the RS model is particularly appropriate to incorporate the
suggested Yukawa configurations. Indeed, the RS geometrical mechanism of
fermion locations along the extra dimension, combined with the two Yukawa
scenarios, reproduces all the present experimental data on fermion masses and
mixing angles. It is quite remarkable that in the USY case, only two complex
phases of definite value +-Pi/2 are sufficient to generate the known neutrino
mass differences, while at same time, permitting large leptonic mixing in
agreement with experiment.Comment: 11 page
Recent developments in the characterization of superconducting films by microwaves
We describe and analyze selected surface impedance data recently obtained by
different groups on cuprate, ruthenate and diboride superconducting films on
metallic and dielectric substrates for fundamental studies and microwave
applications. The discussion includes a first review of microwave data on MgB2,
the weak-link behaviour of RABiTS-type YBa2Cu3O7-d tapes, and the observation
of a strong anomalous power-dependence of the microwave losses in MgO at low
temperatures. We demonstrate how microwave measurements can be used to
investigate electronic, magnetic, and dielectric dissipation and relaxation in
the films and substrates. The impact of such studies reaches from the
extraction of microscopic information to the engineering of materials and
further on to applications in power systems and communication technology.Comment: Invited contribution to EUCAS2001, accepted for publication in
Physica C in its present for
Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions
Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions.
In the strong electromagnetic fields, c c-bar and b b-bar are produced by
photonuclear and two-photon interactions; hadroproduction can occur in grazing
interactions. We present the total cross sections, quark transverse momentum
and rapidity distributions, as well as the Q Q-bar invariant mass spectra from
the three production channels. We consider AA and pA collisions at the
Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss
techniques for separating the three processes and describe how the AA to pA
production ratios might be measured accurately enough to study nuclear
shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including
17 figure
Two-photon final states in peripheral heavy ion collisions
We discuss processes leading to two photon final states in peripheral heavy
ion collisions at RHIC. Due to the large photon luminosity we show that the
continuum subprocess can be observed with a
large number of events. We study this reaction when it is intermediated by a
resonance made of quarks or gluons and discuss its interplay with the continuum
process, verifying that in several cases the resonant process ovewhelms the
continuum one. It is also investigated the possibility of observing a scalar
resonance (the meson) in this process. Assuming for the the
mass and total decay width values recently reported by the E791 Collaboration
we show that RHIC may detect this particle in its two photon decay mode if its
partial photonic decay width is of the order of the ones discussed in the
literature.Comment: 10 pages, 8 figure
Simple heuristics for the assembly line worker assignment and balancing problem
We propose simple heuristics for the assembly line worker assignment and
balancing problem. This problem typically occurs in assembly lines in sheltered
work centers for the disabled. Different from the classical simple assembly
line balancing problem, the task execution times vary according to the assigned
worker. We develop a constructive heuristic framework based on task and worker
priority rules defining the order in which the tasks and workers should be
assigned to the workstations. We present a number of such rules and compare
their performance across three possible uses: as a stand-alone method, as an
initial solution generator for meta-heuristics, and as a decoder for a hybrid
genetic algorithm. Our results show that the heuristics are fast, they obtain
good results as a stand-alone method and are efficient when used as a initial
solution generator or as a solution decoder within more elaborate approaches.Comment: 18 pages, 1 figur
Exploiting the Temporal Logic Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis
The classic approaches to synthesize a reactive system from a linear temporal
logic (LTL) specification first translate the given LTL formula to an
equivalent omega-automaton and then compute a winning strategy for the
corresponding omega-regular game. To this end, the obtained omega-automata have
to be (pseudo)-determinized where typically a variant of Safra's
determinization procedure is used. In this paper, we show that this
determinization step can be significantly improved for tool implementations by
replacing Safra's determinization by simpler determinization procedures. In
particular, we exploit (1) the temporal logic hierarchy that corresponds to the
well-known automata hierarchy consisting of safety, liveness, Buechi, and
co-Buechi automata as well as their boolean closures, (2) the non-confluence
property of omega-automata that result from certain translations of LTL
formulas, and (3) symbolic implementations of determinization procedures for
the Rabin-Scott and the Miyano-Hayashi breakpoint construction. In particular,
we present convincing experimental results that demonstrate the practical
applicability of our new synthesis procedure
Effective theory for wall-antiwall system
We propose a useful method for deriving the effective theory for a system
where BPS and anti-BPS domain walls coexist. Our method respects an
approximately preserved SUSY near each wall. Due to the finite width of the
walls, SUSY breaking terms arise at tree-level, which are exponentially
suppressed. A practical approximation using the BPS wall solutions is also
discussed. We show that a tachyonic mode appears in the matter sector if the
corresponding mode function has a broader profile than the wall width.Comment: LaTeX file, 30 page, 5 eps figures, references adde
- …
