52,327 research outputs found

    Classical mappings of the symplectic model and their application to the theory of large-amplitude collective motion

    Full text link
    We study the algebra Sp(n,R) of the symplectic model, in particular for the cases n=1,2,3, in a new way. Starting from the Poisson-bracket realization we derive a set of partial differential equations for the generators as functions of classical canonical variables. We obtain a solution to these equations that represents the classical limit of a boson mapping of the algebra. The relationship to the collective dynamics is formulated as a theorem that associates the mapping with an exact solution of the time-dependent Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective motion. The models thus obtained also provide a test of methods for constructing an approximately decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our earlier works reproduces the main results of the theorem.Comment: 23 pages, LaTeX using REVTeX 3.

    Single Boson Images Via an Extended Holstein Primakoff Mapping

    Get PDF
    The Holstein-Primakoff mapping for pairs of bosons is extended in order to accommodate single boson mapping. The proposed extension allows a variety of applications and especially puts the formalism at finite temperature on firm grounds. The new mapping is applied to the O(N+1) anharmonic oscillator with global symmetry broken down to O(N). It is explicitly demonstrated that N-Goldstone modes appear. This result generalizes the Holstein-Primakoff mapping for interacting boson as developed in ref.[1].Comment: 9 pages, LaTeX. Physical content unchanged. Unnecessary figure remove

    Exact relativistic treatment of stationary counter-rotating dust disks III. Physical Properties

    Full text link
    This is the third in a series of papers on the construction of explicit solutions to the stationary axisymmetric Einstein equations which can be interpreted as counter-rotating disks of dust. We discuss the physical properties of a class of solutions to the Einstein equations for disks with constant angular velocity and constant relative density which was constructed in the first part. The metric for these spacetimes is given in terms of theta functions on a Riemann surface of genus 2. It is parameterized by two physical parameters, the central redshift and the relative density of the two counter-rotating streams in the disk. We discuss the dependence of the metric on these parameters using a combination of analytical and numerical methods. Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the static limit which gives a solution of the Morgan and Morgan class and the limit of a disk without counter-rotation. We study the mass and the angular momentum of the spacetime. At the disk we discuss the energy-momentum tensor, i.e. the angular velocities of the dust streams and the energy density of the disk. The solutions have ergospheres in strongly relativistic situations. The ultrarelativistic limit of the solution in which the central redshift diverges is discussed in detail: In the case of two counter-rotating dust components in the disk, the solutions describe a disk with diverging central density but finite mass. In the case of a disk made up of one component, the exterior of the disks can be interpreted as the extreme Kerr solution.Comment: 30 pages, 20 figures; to appear in Phys. Rev.

    Boson-fermion mappings for odd systems from supercoherent states

    Get PDF
    We extend the formalism whereby boson mappings can be derived from generalized coherent states to boson-fermion mappings for systems with an odd number of fermions. This is accomplished by constructing supercoherent states in terms of both complex and Grassmann variables. In addition to a known mapping for the full so(2NN+1) algebra, we also uncover some other formal mappings, together with mappings relevant to collective subspaces.Comment: 40 pages, REVTE

    Quantum theory of large amplitude collective motion and the Born-Oppenheimer method

    Get PDF
    We study the quantum foundations of a theory of large amplitude collective motion for a Hamiltonian expressed in terms of canonical variables. In previous work the separation into slow and fast (collective and non-collective) variables was carried out without the explicit intervention of the Born Oppenheimer approach. The addition of the Born Oppenheimer assumption not only provides support for the results found previously in leading approximation, but also facilitates an extension of the theory to include an approximate description of the fast variables and their interaction with the slow ones. Among other corrections, one encounters the Berry vector and scalar potential. The formalism is illustrated with the aid of some simple examples, where the potentials in question are actually evaluated and where the accuracy of the Born Oppenheimer approximation is tested. Variational formulations of both Hamiltonian and Lagrangian type are described for the equations of motion for the slow variables.Comment: 29 pages, 1 postscript figure, preprint no UPR-0085NT. Latex + epsf styl

    Foundations of self-consistent particle-rotor models and of self-consistent cranking models

    Get PDF
    The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two derivations of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the result in powers of the ratio of single-particle angular momentum to collective angular momentum, that is essentual to reach the cranking limit. The derivation also requires a distinct, angular-momentum violating, step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and full three-dimensional cranking for the triaxial one. The final equations remain number conserving. In an appendix, the Kerman-Klein method is developed in more detail, and the outlines of several algorithms for obtaining solutions of the associated non-linear formalism are suggested.Comment: 29 page

    The NASA SETI sky survey: Recent developments

    Get PDF
    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future

    Relativistic bound-state equations in three dimensions

    Get PDF
    Firstly, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-dimensional ones. Unlike ``quasi-potential approaches'' this procedure does not involve the use of delta-function constraints on the relative four-momentum. In the absence of negative-energy states, the kernels of the three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation theory diagrams. Consequently, such equations have two major advantages over quasi-potential equations: they may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the original four-dimensional equation. Secondly, a simple four-dimensional equation with the correct one-body limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting three-dimensional equation has the correct one-body limit and may be systematically improved upon. The quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is found that equations obtained using the method espoused here approximate the wave functions obtained from their parent four-dimensional equations significantly better than the corresponding quasi-potential equations do.Comment: 28 pages, RevTeX, 6 figures attached as postscript files. Accepted for publication in Phys. Rev. C. Minor changes from original version do not affect argument or conclusion

    Saturn's microwave spectrum: Implications for the atmosphere and the rings

    Get PDF
    Measurements of Saturn's disk temperature are compiled to determine the planet's microwave spectrum from 1 mm to 100 cm wavelength. The data were adjusted to conform with a common flux density scale. A model of Saturn's rings is used to remove the effects of the rings from the atmospheric component at centimeter and decimeter wavelengths. Theoretical spectra for a number of convective atmospheric models were computed and compared with the observed spectrum. Radiative-convective models with approximately solar composition and with an effective temperature of approximately 89 K are in good agreement with the observations. The agreement between the observed and theoretical spectra is a strong indication that gaseous ammonia is present in Saturn's atmosphere. A good fit to the data is obtained with an ammonia mixing ratio of approximately 5 x 10,0001. A comparison of the millimeter wavelength data with the best-fitting atmospheric spectrum indicates that the thermal component of the ring brightness temperature near 1 mm wavelength is approximately 25 k
    • …
    corecore