1,992 research outputs found

    Implicit Copulas from Bayesian Regularized Regression Smoothers

    Full text link
    We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors --- a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection --- and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions

    Distributional Regression for Data Analysis

    Full text link
    Flexible modeling of how an entire distribution changes with covariates is an important yet challenging generalization of mean-based regression that has seen growing interest over the past decades in both the statistics and machine learning literature. This review outlines selected state-of-the-art statistical approaches to distributional regression, complemented with alternatives from machine learning. Topics covered include the similarities and differences between these approaches, extensions, properties and limitations, estimation procedures, and the availability of software. In view of the increasing complexity and availability of large-scale data, this review also discusses the scalability of traditional estimation methods, current trends, and open challenges. Illustrations are provided using data on childhood malnutrition in Nigeria and Australian electricity prices.Comment: Accepted for publication in Annual Review of Statistics and its Applicatio

    Scalable Estimation for Structured Additive Distributional Regression Through Variational Inference

    Full text link
    Structured additive distributional regression models offer a versatile framework for estimating complete conditional distributions by relating all parameters of a parametric distribution to covariates. Although these models efficiently leverage information in vast and intricate data sets, they often result in highly-parameterized models with many unknowns. Standard estimation methods, like Bayesian approaches based on Markov chain Monte Carlo methods, face challenges in estimating these models due to their complexity and costliness. To overcome these issues, we suggest a fast and scalable alternative based on variational inference. Our approach combines a parsimonious parametric approximation for the posteriors of regression coefficients, with the exact conditional posterior for hyperparameters. For optimization, we use a stochastic gradient ascent method combined with an efficient strategy to reduce the variance of estimators. We provide theoretical properties and investigate global and local annealing to enhance robustness, particularly against data outliers. Our implementation is very general, allowing us to include various functional effects like penalized splines or complex tensor product interactions. In a simulation study, we demonstrate the efficacy of our approach in terms of accuracy and computation time. Lastly, we present two real examples illustrating the modeling of infectious COVID-19 outbreaks and outlier detection in brain activity

    Bayesian Variable Selection for Non-Gaussian Responses: A Marginally Calibrated Copula Approach

    Get PDF
    We propose a new highly flexible and tractable Bayesian approach to undertake variable selection in non-Gaussian regression models. It uses a copula decomposition for the joint distribution of observations on the dependent variable. This allows the marginal distribution of the dependent variable to be calibrated accurately using a nonparametric or other estimator. The family of copulas employed are `implicit copulas' that are constructed from existing hierarchical Bayesian models widely used for variable selection, and we establish some of their properties. Even though the copulas are high-dimensional, they can be estimated efficiently and quickly using Markov chain Monte Carlo (MCMC). A simulation study shows that when the responses are non-Gaussian the approach selects variables more accurately than contemporary benchmarks. A real data example in the Web Appendix illustrates that accounting for even mild deviations from normality can lead to a substantial increase in accuracy. To illustrate the full potential of our approach we extend it to spatial variable selection for fMRI. Using real data, we show our method allows for voxel-specific marginal calibration of the magnetic resonance signal at over 6,000 voxels, leading to an increase in the quality of the activation maps

    Variational inference and sparsity in high-dimensional deep Gaussian mixture models

    Get PDF
    Gaussian mixture models are a popular tool for model-based clustering, and mixtures of factor analyzers are Gaussian mixture models having parsimonious factor covariance structure for mixture components. There are several recent extensions of mixture of factor analyzers to deep mixtures, where the Gaussian model for the latent factors is replaced by a mixture of factor analyzers. This construction can be iterated to obtain a model with many layers. These deep models are challenging to fit, and we consider Bayesian inference using sparsity priors to further regularize the estimation. A scalable natural gradient variational inference algorithm is developed for fitting the model, and we suggest computationally efficient approaches to the architecture choice using overfitted mixtures where unnecessary components drop out in the estimation. In a number of simulated and two real examples, we demonstrate the versatility of our approach for high-dimensional problems, and demonstrate that the use of sparsity inducing priors can be helpful for obtaining improved clustering results.Peer Reviewe

    Mitigating spatial confounding by explicitly correlating Gaussian random fields

    Get PDF
    Spatial models are used in a variety of research areas, such as environmental sciences, epidemiology, or physics. A common phenomenon in such spatial regression models is spatial confounding. This phenomenon is observed when spatially indexed covariates modeling the mean of the response are correlated with a spatial random effect included in the model, for example, as a proxy of unobserved spatial confounders. As a result, estimates for regression coefficients of the covariates can be severely biased and interpretation of these is no longer valid. Recent literature has shown that typical solutions for reducing spatial confounding can lead to misleading and counterintuitive results. In this article, we develop a computationally efficient spatial model that explicitly correlates a Gaussian random field for the covariate of interest with the Gaussian random field in the main model equation and integrates novel prior structures to reduce spatial confounding. Starting from the univariate case, we extend our prior structure also to the case of multiple spatially confounded covariates. In simulation studies, we show that our novel model flexibly detects and reduces spatial confounding in spatial datasets, and it performs better than typically used methods such as restricted spatial regression. These results are promising for any applied researcher who wishes to interpret covariate effects in spatial regression models. As a real data illustration, we study the effect of elevation and temperature on the mean of monthly precipitation in Germany.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Flexible specification testing in quantile regression models

    Get PDF
    We propose three novel consistent specification tests for quantile regression models which generalize former tests in three ways. First, we allow the covariate effects to be quantile-dependent and nonlinear. Second, we allow parameterizing the conditional quantile functions by appropriate basis functions, rather than parametrically. We are thereby able to test for general functional forms, while retaining linear effects as special cases. In both cases, the induced class of conditional distribution functions is tested with a Cramér–von Mises type test statistic for which we derive the theoretical limit distribution and propose a bootstrap method. Third, a modified test statistic is derived to increase the power of the tests. We highlight the merits of our tests in a detailed MC study and two real data examples. Our first application to conditional income distributions in Germany indicates that there are not only still significant differences between East and West but also across the quantiles of the conditional income distributions, when conditioning on age and year. The second application to data from the Australian national electricity market reveals the importance of using interaction effects for modeling the highly skewed and heavy-tailed distributions of energy prices conditional on day, time of day and demand.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Semi-Structured Deep Distributional Regression: Combining Structured Additive Models and Deep Learning

    Full text link
    Combining additive models and neural networks allows to broaden the scope of statistical regression and extends deep learning-based approaches by interpretable structured additive predictors at the same time. Existing approaches uniting the two modeling approaches are, however, limited to very specific combinations and, more importantly, involve an identifiability issue. As a consequence, interpretability and stable estimation is typically lost. We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture. To overcome the inherent identifiability issues between different model parts, we construct an orthogonalization cell that projects the deep neural network into the orthogonal complement of the statistical model predictor. This enables proper estimation of structured model parts and thereby interpretability. We demonstrate the framework's efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications

    Bayesian Conditional Transformation Models

    Full text link
    Recent developments in statistical regression methodology establish flexible relationships between all parameters of the response distribution and the covariates. This shift away from pure mean regression is just one example and is further intensified by conditional transformation models (CTMs). They aim to infer the entire conditional distribution directly by applying a transformation function that transforms the response conditionally on a set of covariates towards a simple log-concave reference distribution. Thus, CTMs allow not only variance, kurtosis and skewness but the complete conditional distribution function to depend on the explanatory variables. In this article, we propose a Bayesian notion of conditional transformation models (BCTM) for discrete and continuous responses in the presence of random censoring. Rather than relying on simple polynomials, we implement a spline-based parametrization for monotonic effects that are supplemented with smoothness penalties. Furthermore, we are able to benefit from the Bayesian paradigm directly via easily obtainable credible intervals and other quantities without relying on large sample approximations. A simulation study demonstrates the competitiveness of our approach against its likelihood-based counterpart, most likely transformations (MLTs) and Bayesian additive models of location, scale and shape (BAMLSS). Three applications illustrate the versatility of the BCTMs in problems involving real world data
    • …
    corecore