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Abstract
Gaussian mixture models are a popular tool for model-based clustering, and mixtures of factor analyzers are Gaussian
mixture models having parsimonious factor covariance structure for mixture components. There are several recent extensions
of mixture of factor analyzers to deep mixtures, where the Gaussian model for the latent factors is replaced by a mixture of
factor analyzers. This construction can be iterated to obtain a model with many layers. These deep models are challenging to
fit, and we consider Bayesian inference using sparsity priors to further regularize the estimation. A scalable natural gradient
variational inference algorithm is developed for fitting the model, and we suggest computationally efficient approaches to
the architecture choice using overfitted mixtures where unnecessary components drop out in the estimation. In a number
of simulated and two real examples, we demonstrate the versatility of our approach for high-dimensional problems, and
demonstrate that the use of sparsity inducing priors can be helpful for obtaining improved clustering results.

Keywords Deep clustering · High-dimensional clustering · Horseshoe prior · Mixtures of factor analyzers · Natural gradient ·
Variational approximation

1 Introduction

Exploratory data analysis tools such as cluster analysis
need to be increasingly flexible to deal with the greater
complexity of datasets arising in modern applications. For
high-dimensional data, there has been much recent interest
in deep clustering methods based on latent variable models
withmultiple layers. Ourwork considers deepGaussianmix-
ture models for clustering, and in particular a deep mixture
of factor analyzers (DMFA) model recently introduced by
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Viroli and McLachlan (2019). The DMFA model is highly
parametrized, and to make the estimation tractable Viroli
and McLachlan (2019) consider a variety of constraints on
model parameters which enable them to obtain promising
results. The objective of the current work is to consider a
Bayesian approach to estimation of the DMFA model which
uses sparsity-inducing priors to further regularize the esti-
mation. We use the horseshoe prior of Carvalho and Polson
(2010), and demonstrate in a number of problems that the
use of sparsity-inducing priors is helpful. This is particularly
true in clustering problems which are high-dimensional and
involve a large number of noise features. A computation-
ally efficient natural gradient variational inference scheme is
developed, which is scalable to high-dimensions and large
datasets. A difficult problem in the application of the DMFA
model is the choice of architecture, i.e., determining the num-
ber of layers and the dimension of each layer, since trying
many different architectures is computationally burdensome.
We discuss useful heuristics for choosing good models and
selecting the number of clusters in a computationally thrifty
way, using overfitted mixtures (Rousseau and Mengersen
2011) with suitable priors on the mixing weights.

There are several suggested methods in the literature
for constructing deep versions of Gaussian mixture mod-
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els (GMM)s involving multiple layers of latent variables.
One of the earliest is the mixture of mixtures model of Li
(2005). Li (2005) considers modeling non-Gaussian com-
ponents in mixture models using a mixture of Gaussians,
resulting in a mixture of mixtures structure. The model is
not identifiable through the likelihood, and Li (2005) sug-
gests several ways to address this issue, as well as methods
for choosing the number of components for each cluster.
Malsiner-Walli et al. (2017) identify the model through the
prior in aBayesian approach, and consider Bayesianmethods
for model choice. Another deep mixture architecture is sug-
gested in van den Oord and Schrauwen (2014). The authors
consider a network with linear transformations at different
layers, and the random sampling of a path through the lay-
ers. Each path defines a mixture component by applying the
corresponding sequence of transformations to a standard nor-
mal random vector. Their approach allows a large number of
mixture components, but without an explosion of the number
of parameters due to the way parameters are shared between
components. Chandra et al. (2020) propose a latent factor
mixture model with sparsity inducing priors on the factor
loading matrices suitable for problems where the number of
features exceeds the number of observations, a setting which
is not considered here.

The model of Viroli and McLachlan (2019) considered
here is a multi-layered extension of the mixture of fac-
tor analyzers (MFA) model (Ghahramani and Hinton 1997;
McLachlan et al. 2003). TheMFAmodel is a GMM in which
component covariance matrices have a parsimonious factor
structure, making this model suitable for high-dimensional
data. The factor covariance structure can be interpreted as
explaining dependence in terms of a low-dimensional latent
Gaussian variable. Extending the MFA model to a deep
model with multiple layers has two main advantages. First,
non-Gaussian clusters can be obtained and second, it enables
the fitting of GMMs with a large number of components,
which is particularly relevant for high-dimensional data and
cases when the number of true clusters is large. Tang et al.
(2012) were the first to consider a deep MFA model, where
a mixture of factor analyzers model is used as a prior for the
latent factors instead of a Gaussian distribution. Applying
this idea recursively leads to deep models with many layers.
Their architecture splits components into several subcom-
ponents at the next layer in a tree-type structure. Yang et al.
(2017) consider a two-layer version of themodel ofTang et al.
(2012) incorporating a common factor loading matrix at the
first level and some other restrictions on the parametrization.
Fuchs et al. (2022) extend themodel ofViroli andMcLachlan
(2019) to mixed data.

The model of Viroli and McLachlan (2019) combines
some elements of themodels of Tang et al. (2012) and van den
Oord and Schrauwen (2014). Similar to Tang et al. (2012),
an MFA prior is considered for the factors in an MFA model

and multiple layers can be stacked together. However, sim-
ilar to the model of van den Oord and Schrauwen (2014),
their architecture has parameters for Gaussian component
distributionswith factor structure arranged in a network, with
each Gaussian mixture component corresponding to a path
through the network. Parameter sharing between compo-
nents and the factor structuremakes themodel parsimonious.
Viroli and McLachlan (2019) consider restrictions on the
dimensionality of the factors at different layers and other
model parameters to help identify the model. A stochas-
tic EM algorithm is used for estimation, and they report
improved performance compared to greedy layerwise fitting
algorithms. For choosing the network architecture, they fit a
large number of different architectures and use the Akaike
Information Criterion (AIC) or Bayesian Information Crite-
rion (BIC) to choose the final model. Selosse et al. (2020)
report that even with the identification restrictions suggested
in Viroli andMcLachlan (2019), it can be very challenging to
fit the DMFAmodel. The likelihood surface has a large num-
ber of local modes, and it can be hard to find good modes,
possibly because the estimation of a large number of latent
variables is difficult. This is one motivation for the sparsity
priors we introduce here. While sparse Bayesian approaches
have been considered before for both factor models (see,
e.g., Carvalho et al. 2008; Bhattacharya and Dunson 2011;
Ročková and George 2016; Hahn et al. 2018, among many
others) and the MFA model (Ghahramani and Beal 2000),
they have not been considered for the DMFA model.

The structure of the paper is as follows. In Sect. 2we intro-
duce the DMFA model of Viroli and McLachlan (2019) and
our Bayesian treatment making appropriate prior choices.
Section 3 describes our scalable natural gradient variational
inference method, and the approach to choice of the model
architecture. Section 4 illustrates the good performance of
our method for simulated data in a number of scenarios and
compares our method to several alternativemethods from the
literature for simulated and benchmark datasets considered in
Viroli and McLachlan (2019). Although it remains challeng-
ing to fit complex latent variable models such as the DMFA,
we find that in many situations which are well suited to spar-
sity our approach is helpful for producing better clusterings.
Sections 5 and 6 consider two real high-dimensional exam-
ples on gene expression data and taxi networks illustrating
the potential of our Bayesian treatment of DMFA models.
Section 7 gives some concluding discussion.

2 Bayesian deepmixture of factor analyzers

This section describes our Bayesian DMFA model. We con-
sider a conventional MFA model first in Sect. 2.1, and then
the deep extension of this by Viroli and McLachlan (2019)
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in Sect. 2.2. The priors used for Bayesian inference are dis-
cussed in Sect. 2.3.

2.1 MFAmodel

In what follows we write N (μ,�) for the normal distri-
bution with mean vector μ and covariance matrix �, and
φ(y;μ,�) for the corresponding density function. Suppose
yi = (yi1, . . . , yid)�, i = 1, . . . , n are independent iden-
tically distributed observations of dimension d. An MFA
model for yi assumes a density of the form

K∑

k=1

wkφ(yi ;μk, Bk B
�
k + δk), (1)

where wk > 0 are mixing weights, k = 1, . . . , K , with∑K
k=1 wk = 1; μk = (μk1, . . . , μkd)

� are component mean
vectors; and Bk B�

k + δk , k = 1, . . . , K , are component spe-
cific covariance matrices with Bk d × D matrices, D � d,
and δk are d × d diagonal matrices with diagonal entries
(δk1, . . . , δkd)

�. The model (1) has a generative represen-
tation in terms of D-dimensional latent Gaussian random
vectors, zi ∼ N (0, I ), i = 1, . . . , n. Suppose that yi is gen-
erated with probability wk as

yi = μk + Bkzi + εik, (2)

where εik ∼ N (0, δk). Under this generative model, yi has
density (1). The latent variables zi are called factors, and
the matrices Bk are called factor loadings or factor load-
ing matrices. In ordinary factor analysis (Bartholomew et al.
2011), which corresponds to K = 1, restrictions on the fac-
tor loading matrices are made to ensure identifiability, and
similar restrictions are needed in the MFA model. Common
restrictions are lower-triangular structure with positive diag-
onal elements, or orthogonality of the columns of the factor
loadingmatrix.With continuous shrinkage sparsity-inducing
priors and careful initialization of the variational optimiza-
tion algorithm, we did not find imposing an identifiability
restriction such as a lower-triangular structure on the fac-
tor loading matrices to be necessary in our applications later.
Identifiability issues for sparse factormodels with point mass
mixture priors have been considered recently in Frühwirth-
Schnatter and Lopes (2018).

The MFA model is well suited to analyzing high-
dimensional data, because the modeling of dependence in
terms of low-dimensional latent factors results in a parsimo-
nious model. The idea of deep versions of the MFA model
is to replace the Gaussian assumption zi ∼ N (0, I ) with the
assumption that the zi ’s themselves follow an MFA model.
This idea can be applied recursively, to define a deep model
with many layers.

2.2 DMFAmodel

Suppose once again that yi , i = 1, . . . , n, are indepen-
dent and identically distributed observations of dimension
D(0) = d, and define yi = z(0)i . We consider a hierarchical

model in which latent variables z(l)i , at layer l = 1, . . . , L
are generated according to the following generative process.
Let K (l) denote the number of mixture components at layer l.
Then, with probability w

(l)
k , k = 1, . . . , K (l),

∑
k w

(l)
k = 1,

z(l−1)
i is generated as

z(l−1)
i = μ

(l)
k + B(l)

k z(l)i + ε
(l)
ik , (3)

where ε
(l)
ik ∼ N (0, δ(l)

k ), μ
(l)
k is a D(l−1)-vector, B(l)

k is a

D(l−1) × D(l) factor loading matrix, δ
(l)
k = diag(δ(l)

k1 , . . . ,

δ
(l)
kD(l−1) ) is a D(l−1) × D(l−1) diagonal matrix with diagonal

elements δ
(l)
k j > 0 and z(L)

i ∼ N (0, ID(L) ). Eq. (3) is the same

as the generative model (2) for z(l−1)
i , except that we have

replaced the Gaussian assumption for the factors appearing
on the right-hand side with a recursive modeling using the
MFAmodel. Similar to the MFA each successive layer in the
deep model performs some type of dimension reduction, so
D(l+1) � D(l) for l = 0, . . . , L . It is always recommended

to use the Anderson–Rubin condition D(l+1) ≤ D(l)−1
2 for

l = 0, . . . , L in the construction of the model, which is
further discussed in Sect. 3.7. Write vec(B(l)

k ) for the vector-

ization of B(l)
k , the vector obtained by stacking the elements

of B(l)
k into a vector columnwise. Write

z(l) =
(
z(l)1

�
, . . . , z(l)n

�)�
,

μ(l) =
(
μ

(l)
1

�
, . . . , μ

(l)
K (l)

�)�
,

B(l) =
(
vec

(
B(l)
1

)�
, . . . , vec

(
B(l)
K (l)

)�)�
,

δ(l) =
(
δ
(l)
1

�
, . . . , δ

(l)
K (l)

�)�

w(l) =
(
w

(l)
1 , . . . , w

(l)
K (l)

)�
,

z =
(
z(1)

�
, . . . , z(L)�)�

,

μ =
(
μ(1)�, . . . , μ(L)�)�

,

B =
(
B(1)�, . . . , B(L)�)�

,

δ =
(
δ(1)�, . . . , δ(L)�)�

,

w =
(
w(1)�, . . . , w(L)�)�

.

In (3), we also denote γ
(l)
ik = 1 if z(l−1)

i is generated from

the k-th component model with probability w
(l)
k , γ

(l)
ik = 0

otherwise, and

γ =
(
γ (1)�, . . . , γ (L)�)�

, γ (l)

=
(
γ

(l)
1

�
, . . . , γ (l)

n
�)�

, γ
(l)
i

=
(
γ

(l)
i1 , . . . , γ

(l)
i K (l)

)�
.

Viroli andMcLachlan (2019) observe that theirDMFAmodel
is just a Gaussian mixture model with

∏L
l=1 K

(l) compo-
nents. The components correspond to “paths” through the
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factor mixture components at the different levels. Write
kl ∈ {1, . . . , K (l)} for the index of a factor mixture com-
ponent at level l. Let k = (k1, . . . , kL)� index a path. Let
w(k) = ∏L

l=1 w
(l)
kl
,

μ(k) = μ
(1)
k1

+
L∑

l=2

(
l−1∏

m=1

B(m)
km

)
μ

(l)
kl

and

�(k) = δ
(1)
k1

+
L∑

l=2

(
l−1∏

m=1

B(m)
km

)
δ
(l)
kl

(
l−1∏

m=1

B(m)
km

)�
.

Then, the DMFAmodel corresponds to the Gaussianmixture
density

∑

k

w(k)φ(y;μ(k),�(k)).

TheDMFAallows expressivemodeling through a large num-
ber of mixture components, but due to the parameter sharing
and the factor structure the model remains parsimonious. An
example of a DMFA architecture is given in Fig. 1.

2.3 Prior distributions

For our priors on component mean parameters at each layer,
we use heavy-tailed Cauchy priors, and for standard devia-
tions, half-Cauchy priors. These thick-tailed priors tend to be
dominated by likelihood information in the event of any con-
flict with the data. For component factor loadingmatrices, we
use sparsity-inducing horseshoe priors. Sparse structure in
factor loadingmatrices is motivated by the common situation
in which dependence can be explained through latent factors,
where each one influences only a small subset of compo-
nents. The horseshoe priors are thus a reasonable choice even
though other choices would be possible (see, e.g., the discus-
sion of Bhattacharya and Dunson 2011).

Malsiner-Walli et al. (2017) consider a Bayesian approach
to the mixture of mixtures model, which is a kind of DGMM,
and give an interesting discussion of prior choice in that con-
text. They observe that in themixture ofmixtures, themixture
at the higher level groups together the lower level clusters to
accommodate non-Gaussianity, and their prior choices are
constructed with this in mind. Unfortunately, the intuition
behind their priors does not hold for the model considered
here, since the network architecture of Viroli andMcLachlan
(2019) does not possess the nested structure of the mix-
ture of mixtures, which is crucial to the prior construction
in Malsiner-Walli et al. (2017).

Selecting marginally independent priors, which do not
share information across layers and components, is handy
for our variational inference approach as it allows us to

write down the mean field approximation in closed form as
explained further in Sect. 3.2.

A precise description of the priors will be given now.
Denote the the complete vector of parameters by ϑ =
(μ�, B�, z�, w�, δ�, γ �)�. First, we assume indepen-
dence betweenμ, B, z, δ andw in their prior distribution. For
the marginal prior distribution forμ, we furthermore assume
independence between all components, and the marginal
prior density for μ

(l)
k j is assumed to be a Cauchy density,

C(0,G(l)), where G(l) is a known hyperparameter possibly
depending on l, l = 1, . . . , L .

This Cauchy prior can be represented hierarchically as a
mixture of a univariate Gaussian and inverse gamma distri-
bution, i.e.,

μ
(l)
k j |g(l)

k j ∼ N (0,G(l)g(l)
k j ), g(l)

k j ∼ IG
(
1

2
,
1

2

)
,

and we write

g =
(
g(1)�, . . . , g(L)�)�

, g(l) =
(
g(l)
1

�
, . . . , g(l)

K (l)

�)�
,

g(l)
k =

(
g(l)
k1 , . . . , g(l)

kD(l−1)

)�
.

We augment the model to include the parameters g in this
hierarchical representation.

For the prior on B, we assume elements are independently
distributed a priori with a horseshoe prior (Carvalho and
Polson 2010),

vec
(
B(l)
k

)

j
∼ N

(
0, τ (l)

k /h(l)
k j

)
, τ

(l)
k ∼ IG

(
1

2
,

1

ξ
(l)
k

)
,

ξ
(l)
k ∼ IG

(
1

2
,

1

(ν(l))2

)
,

h(l)
k j ∼ G

(
1

2
, c(l)

k j

)
, c(l)

k j ∼ G
(
1

2
, 1

)
,

where G(a, b) denotes a gamma distribution with shape a
and scale parameter b and we write

h =
(
h(1)�, . . . , h(L)�)�

,

c =
(
c(1)�, . . . , c(L)�)�

,

h(l) =
(
h(l)
1

�
, . . . , h(l)

K (l)

�)�
,

c(l) =
(
c(l)
1

�
, . . . , c(l)

K (l)

�)�
,

h(l)
k =

(
h(l)
k1 , . . . , h

(l)
kκ(l)

)�
,

c(l)
k =

(
c(l)
k1 , . . . , c

(l)
kκ(l)

)�
,

τ =
(
τ (1)�, . . . , τ (L)�)�

,

ξ =
(
ξ (1)�, . . . , ξ (L)�)�

,

τ (l) =
(
τ

(l)
1

�
, . . . , τ

(l)
K (l)

�)�
,

ξ (l) =
(
ξ

(l)
1

�
, . . . , ξ

(l)
K (l)

�)�
,
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Fig. 1 Example of a DMFA
architecture with L = 2 layers.
The latent input variables z(2)i
are fed through a fully
connected network with L = 2
layers, with K (1) = 4 and
K (2) = 3 components,
respectively. A possible path
through the network is marked
in orange. Each component of
the network corresponds to a
factor analyzer (FA), which
transforms the input variable by
z(l−1)
i = μ

(l)
k +B(l)

k z(l)i +ε
(l)
ik , l =

1, 2, k = 1, . . . , K (l). This way
each layer can be viewed as a
MFA

where κ(l) = D(l−1)D(l) and ν = (ν(1)�, . . . , ν(L)�)� ∈
RL are scale parameters assumed to be known. We augment
the model to include the parameters h, c, τ, ξ in the hierar-
chical representation.

For δ, we assume all elements are independent in the prior

with
√

δ
(l)
k j being half-Cauchy distributed,

√
δ
(l)
k j ∼ HC(A(l)),

where the scale parameter A(l) is knownandpossibly depend-
ing on l, l = 1, . . . , L . This prior can also be expressed
hierarchically,

δ
(l)
k j |ψ(l)

k j ∼ IG
(
1

2
,

1

ψ
(l)
k j

)
ψ

(l)
k j ∼ IG

(
1

2
,

1

A(l)2

)
,

and we write

ψ =
(
ψ(1)�, . . . , ψ(L)�)�

, ψ(l) =
(
ψ

(l)
1

�
, . . . , ψ

(l)
K (l)

�)�
,

ψ
(l)
k =

(
ψ

(l)
k1 , . . . , ψ

(l)
kD(l−1)

)�
.

Once again, we can augment the original model to include
ψ and we do so.

The prior on w assumes independence between w(l),
l = 1, . . . , L , and the marginal prior for w(l) is Dirichlet,
w(t) ∼ Dir(ρ(t)

l , . . . , ρ
(l)
k(t) . The full set of unknowns in the

model is {μ, B, z, w, δ, γ, ψ, g, h, c, τ, ξ} andwedenote the
corresponding vector of unknowns by

θ =
(
μ�, vec(B)�, z�, w�, δ�, γ �, ψ�, g�, h�, c�, τ�, ξ�)�

.

A graphical representation of the model is given in Fig. 2.

3 Variational inference for the Bayesian
DMFA

Next we review basic ideas of variational inference and intro-
duce a scalable variational inference method for the DMFA
model.

3.1 Variational inference

Variational inference (VI) approximates a posterior density
p(θ |y) by assuming a form qλ(θ) for it and then minimiz-
ing some measure of closeness to p(θ |y). Here, λ denotes
variational parameters to be optimized, such as the mean
and covariance matrix parameters in a multivariate Gaus-
sian approximation. If the measure of closeness adopted is
the Kullback–Leibler divergence, the optimal approximation
maximizes the evidence lower bound (ELBO)

L(λ) =
∫

qλ(θ) log

{
p(y, θ)

qλ(θ)

}
dθ , (4)

with respect to λ. Eq. (4) is an expectation with respect to
qλ(θ),

L(λ) = Eqλ
{log(h(θ)) − log(qλ(θ))} , (5)
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Fig. 2 Graphical representation of all parameter dependencies for the
Bayesian DMFAwith sparsity priors for one layer l = 1, . . . , L . Latent
variables are in circles, while hyperparameters are not. The parameters

μ(l), B(l), δ(l) and w(l) act as MFA transformation on z(l). We observe
y = z(0) and z(L) follows a low-dimensional standard Gaussian distri-
bution

where h(θ) = p(y|θ)p(θ) and this observation enables an
unbiasedMonteCarlo estimation of the gradient ofL(λ) after
differentiating under the integral sign. This is often used with
stochastic gradient ascent methods to optimize the ELBO,
see Blei et al. (2017) for further background on VI methods.
For some models and appropriate forms for qλ(θ), L(λ) can
be expressed analytically, and this is the case for our pro-
posed VI method for the DFMA model. In this case, finding
the optimal value λ∗ does not require Monte Carlo sampling
from the approximation to implement the variational opti-
mization (see, e.g., Honkela et al. 2008), although the use of
subsampling to deal with large datasets may still require the
use of stochastic optimization.

3.2 Mean field variational approximation for DMFA

Choosing the form of qλ(θ) requires balancing flexibility and
computational tractability. Here, we consider the factorized
form

qλ(θ) = q(μ)q(vec(B))q(z)q(w)q(δ)q(γ )q(ψ)

× q(g)q(h)q(c)q(τ )q(ξ) (6)

and each factor in Eq. (6) will also be fully factorized. For
the DMFA model, the existence of conditional conjugacy
through our prior choices means that the parametric form of
the factors follows from the factorization assumptions made.
We can give an explicit expression for theELBO (see theWeb
Appendix A.2 for details) and use numerical optimization
techniques to find the optimal variational parameter λ∗. It is
possible to consider less restrictive factorization assumptions
than we have, retaining some of the dependence structure,
while at the same time retaining the closed form for the lower

bound. A fully factorized approximation has been used to
reduce the number of variational parameters to optimize. For
the fully factorized approximation, λ has dimension

L∑

l=1

K (l)
(
8D(l−1) + 6D(l)D(l−1) + 2n + 5

)
+ 2nD(l).

3.3 Optimization for large datasets

Optimization of the lower bound (5) with respect to the high-
dimensional vector of variational parameters is difficult. One
problem is that the number of variational parameters grows
with the sample size. This occurs because we need to approx-
imate posterior distributions of observation specific latent
variables z(l)i andγ

(l)
i , i = 1, . . . , n, l = 1, . . . , L . To address

this issue, we adapt the idea of stochastic VI by Hoffman
et al. (2013) as follows. We split θ into so-called “global”
and “local” parameters, θ = (β�, ζ�)�, where

β =
(
μ�, B�, w�, δ�, ψ�, g�, h�, c�, τ�, ξ�)�

,

and ζ = (z�, γ �)� denote the “global” and “local” param-
eters of θ , respectively.

Wecan similarly partition the variational parametersλ into
global and local components, λ = (λ�

G, λ�
L )�, where λG and

λL are the variational parameters appearing in the variational
posterior factors involving elements of β and ζ , respectively.
Write the lower bound L(λ) as L(λG, λL). Write M(λG) for
the value of λL optimizing the lower bound with fixed global
parameter λG . When optimizing L(λ), the optimal value of
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λG maximizes

L(λG) = L(λG, M(λG)).

Next, differentiate L(λG) to obtain

∇λGL(λG) = ∇λGL(λG , M(λG))

+ ∇λG M(λG)�∇ML(λG, M(λG))

= ∇λGL(λG , M(λG)). (7)

The last line follows from ∇ML(λG, M(λG)) = 0, since
M(λG) gives the optimal local variational parameter values
for fixed λG . Eq. (7) says that the gradient ∇λGL(λG) can
be computed by first optimizing to find M(λG), and then
computing the gradient of L(λ) with respect to λG with λL

fixed at M(λG).
We optimizeL(λG) using stochastic gradient ascentmeth-

ods, which iteratively update an initial value λ
(1)
G for λG for

t ≥ 1 by the iteration

λ
(t+1)
G = λ

(t)
G + at ◦ ̂∇λGL(λ

(t)
G ),

where at is a vector-valued step size sequence, ◦ denotes

elementwise multiplication, and ̂∇λGL(λ
(t)
G ) is an unbiased

estimate of the gradient of ∇λGL(λG) at λ
(t)
G . An unbiased

estimator of (7) is constructed by randomly sampling a mini-
batch of the data. This enables us to avoid dealing with all
local variational parameters at once, lowering the dimension
of any optimization. Let A be a subset of {1, . . . , n} chosen
uniformly at randomwithout replacement inducing the set of
indices of a datamini-batch. Then, in viewof (7), an unbiased

estimate ̂∇λGL(λG) of ∇λGL(λG) can be obtained by

̂∇λGL(λG) = ∇λGLF (λG) + n

|A|
∑

i∈A

∇λGLi (λG, M(λG)),

where |A| is the cardinality of A, andwe havewrittenL(λ) =
LF (λG) + ∑n

i=1 Li (λ), where Li (λ) is the contribution to
L(λ) of all terms involving the local parameter for the i th
observation and LF (λG) is the remainder. For this estimate,
computation of all components of M(λG) is not required,
since only the optimal local variational parameters for the
mini-batch are needed.

To optimize λG , we use the natural gradient (Amari 1998)
rather than the ordinary gradient. The natural gradient uses an
update which respects the meaning of the variational param-
eters in terms of the underlying distributions they index.
Additionally, the use of natural gradients drastically reduces
the number of iterations in which updates of components
of λG are pushed out of their respective parameter spaces.
For example, the elements of λG , which correspond to vari-
ance parameters, have to be strictly positive. In the rare

cases where a component update does not respect the con-
straints, we set the component to a small positive value.

The natural gradient is given by IF (λG)−1̂∇λGL(λG), where
IF (λG) = Cov(∇λGqλG (β)), where qλG (β) is theβ marginal
of qλ(θ). Because of the factorization of the variational pos-
terior into independent components, it suffices to compute
the submatrices of IF (λG) corresponding to each factor sep-
arately. For the Bayesian DMFA, IF (λG)−1 is available in
closed form.

3.4 Algorithm

The complete algorithm can be divided into two nested steps
iterating over the local and global parameters, respectively.
First, an update of the global parameters is considered using a
stochastic natural gradient ascent step for optimizingL(λG),
with the adaptive stepsize choice proposed inRanganath et al.
(2013). For estimating the gradient in this step, the optimal
local parameters M(λG) for the current λG need to be iden-
tified for observations in a mini-batch. In theory, this can be
done numerically by a gradient ascent algorithm. But this
leads to a long run time, because one has to run this local
gradient ascent until convergence for each step of the global
stochastic gradient ascent. In our experience, it is not nec-
essary to calculate M(λG) exactly, and it suffices to use an
estimate, which helps to decrease the run time of the algo-
rithm. A natural approximate estimator for M(λG) can be
constructed in the following way. Start by estimating the
most likely path γi using the clustering approach described in
Sect. 3.6, while setting β to the current variational posterior
mean estimate for the global parameters. The local varia-

tional parameters appearing in the factor q
(
z(l)i j

)
are then

estimated layerwise starting with l = 1 by setting this den-

sity proportionally to exp
(
E

(
log p

(
z(l)i j |z(l−1)

i , γi , β
)))

,

where the expectation iswith respect toq
(
z(l−1)
i j

)
, andwhich

has a closed form Gaussian expression. In layer 1, z(0)i = yi .
The above approximation is motivated by the mean field
update for q(zi j ), which is proportional to the exponential

of the expected log full conditional for z(l)i j . However, the
usual mean field update to do the local optimization would
require iteration, which is why we use the fast layerwise
approximation. The complete algorithm, details of the local
optimization step and explicit expressions for the conditional
p(z(l)i j |z(l−1)

i , γi , β) are given in the Web Appendix B.2. We
calculate all gradients using the automatic differentiation of
the Python package PyTorch (Paszke et al. 2017).

Due to the large number of local modes of the likelihood
and the high-dimensionality of the parameter vector, conver-
gence of the DMFAmodel can be challenging (Selosse et al.
2020). Convergence to a global optimum is not guaranteed
and often only a local optimum is found.We recommend run-
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ning the algorithm several times, selecting the run reaching
the highest ELBO. The starting position λ

(0)
G has huge impact

on the convergence of the algorithm and aim at selecting it
in a meaningful way, such that λ(0)

G is closer to a good mode
than a random initialization would be. Details on our choice
for λ

(0)
G can be found in Web Appendix B.1.

3.5 Hyperparameter choices

For all experiments, we set the hyperparameters G(l) =
2, ν(l) = 1 and A(l) = 2.5. The hyperparameter ρ

(l)
k is set

either to 1 if the number of clusters desired and therefore the
number of components in the respective layer is known, or
to 0.5 if the number of components is unknown, see Sect. 3.7
for further discussion. In our experiments, the size of the
mini-batch is set to 5% of the data size, but not less then
1 or larger then 1024. This way the number of variational
parameters which need to be updated at every step remains
bounded regardless of the sample size n. We found these
hyperparameter choices to work well in all the diverse sce-
narios considered in Sects. 4, 5 and 6 and therefore consider
them as a default. However, if additional prior information is
available, selecting different hyperparameters might be more
suitable. For example, if the dependence structure between
features is complex, it may be helpful to consider non-sparse
factor loadings at the first layer, with higher levels of shrink-
age in the prior at deeper layers where an elaborate modeling
of dependence structure for the latent variables may be diffi-
cult to sustain. This can be achieved by setting ν(1) to a large
value, for example, ν(1) = 105 and ν(l) = 1 for l > 1.

3.6 Clustering with DMFA

The algorithm described in the previous section returns opti-
mal variational parameters λG for the global parameters β.
A canonical point estimator for β is then given by the mode
of qλ(θ). Following Viroli and McLachlan (2019), we con-
sider only the first layer l = 1 of the model for clustering.
Specifically, the cluster of data point y is given by

argmax
k=1,...,K (1)

w
(1)
k p(y|β, γ

(1)
k = 1).

By integration over the local parameters for y, p(y|β, γ
(1)
k =

1) can be written as a mixture of
∏L

r=2 K
(r) Gaussians of

dimension D(0) for k = 1, . . . , K (1). This way the param-
eters of the bottom layers l = 2, . . . , L can be viewed as
defining a density approximation to the different clusters and
the overall model can be interpreted as a mixture of Gaussian
mixtures. Alternatively, the DMFA can be viewed as a GMM
with

∏L
l=1 K

(l) components, where each component corre-
sponds to a path through the model. By considering each of
these Gaussian components as a separate cluster, the DMFA

can be used to find a very large number of Gaussian clus-
ters. However, Selosse et al. (2020) note that some of these
“global” Gaussian components might be empty, even when
there are data points assigned to every component in each
layer. We investigate the idea of using the DMFA to fit a
large-scale GMM further in Sect. 6.

3.7 Model architecture andmodel selection

So far it has been assumed that the number of layers L , the
number of components in each layer K (l) and the dimensions
of each layer D(l), l = 1, . . . L , are known. As this is usually
not the case in practice, we now discuss how to choose a
suitable architecture.

If the number of mixture components K (l) in a layer is
unknown, we initialize the model with a relatively large
number of components, and set the Dirichlet prior hyperpa-
rameters on the component weights to ρ

(l)
1 = · · · = ρ

(l)
K =

0.5. A large K (l) corresponds to an overfitted mixture, and
for ordinaryGaussianmixtures unnecessary componentswill
drop out under suitable conditions (Rousseau andMengersen
2011). A VI method for mixture models considering overfit-
ted mixtures for model choice is discussed in McGrory and
Titterington (2007). The results of Rousseau and Mengersen
(2011) do not apply directly to deep mixtures because of
the way parameters are shared between components, but we
find that this method for choosing components is useful in
practice. Our experiments show that in the case of deepGaus-
sian mixtures, the variational posterior concentrates around
a small subset of components with high impact, while setting
theweights for other components close to zero. Therefore,we
remove all components with weights smaller than a thresh-
old, set to be 0.01 in simulations.

The choice of the number of layers L and the dimensions
D is a classical model selection problem, where the model
m is chosen out of a finite set of proposed models in the
model space M. We assume a uniform prior on the model
space p(m) ∝ 1 for each m ∈ M. Hence, the model can be
selected by

m̂ = argmax
m∈M

p(m|y) = argmax
m∈M

p(m)

∫
p(y|θ,m)p(θ |m)dθ

= argmax
m∈M

p(y|m).

Denoting the ELBO for the architecture m with varia-
tional parameters λm by L(λm |m), this is a lower bound
for log p(y|m), which is tight if the variational posterior
approximation is exact. Hence, we choose the selectedmodel
by m̂ = argmax

m∈M
L(λ∗

m |m), where λ∗
m denotes the optimal

variational parameter value λm for model m. Since it is
computationally expensive to run the VI algorithm until con-
vergence for all models m ∈ M, a naive approach would be
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to estimate L(λ∗
m |m) via L(λ

(T )
m |m) after running the algo-

rithm for T steps, where λ
(t)
m is the value for λm at iteration

t .
In our experiments, we estimated L(λ∗

m |m) as the mean
over the last 5% of 250 iterations, i.e., m̂ = argmax

m∈M
∑250

t=238

L(λ
(t)
m |m).This calculation can be parallelized by running the

algorithm for each model m on a different machine and only
involves evaluations of the ELBO, which does not induce
additional computational burden as the ELBO needs to be
calculated for fitting the model. For the dimensions, we test
all possible choices fulfilling the Anderson–Rubin condition

D(l+1) ≤ D(l)−1
2 for l = 0, . . . , L , which is a necessary

condition for model identifiability (Frühwirth-Schnatter and
Lopes 2018). Additionally, this condition gives an upper
bound for the number of layers. A model with L layers
must have at least dimension D(0) = 2L+1 − 1. However,
in our experiments, we consider only models with L = 2 or
L = 3 layers, because in our experience architectures with
few layers and a rapid decrease in dimension outperform
architectures with many deep layers. Once an architecture is
chosen based on short runs, the fitting algorithm is fully run
to convergence for the optimal choice.

The only input for the complete model selection proce-
dure is the number of components for each layer. Having the
initialized number of components as an input and selecting
the remaining architecture parameters based on this selection
can be motivated by the common situation where at least a
rough estimate on the expected number of clusters can be
given, while there is no prior information on the architecture
parameters D and L available.

4 Benchmarking using simulated and real
data

To demonstrate the advantages of our Bayesian DMFA with
respect to clustering high-dimensional non-Gaussian data,
computational efficiency ofmodel selection, accommodating
sparse structure and scalability to large datasets, we experi-
ment on several simulated and publicly available benchmark
examples.

4.1 Design of numerical experiments

First we consider two simulated datasets where our Bayesian
approach with sparsity-inducing priors is able to outperform
the maximum likelihood method considered in Viroli and
McLachlan (2019). The data generating process for the first
dataset scenario S1 is a GMM with many noisy (uninforma-
tive) features and sparse covariance matrices. Here, sparsity
priors are helpful because there are many noise features. The

data in scenario S2 has a similar structure to the real data
from the application presented in Sect. 5 having unbalanced
non-Gaussian clusters. Here, the true generative model has
highly unbalanced group sizes, and the regularization that
our priors provide is useful in this setting for stabilizing the
estimation.

Five real datasets considered in Viroli and McLachlan
(2019) are tested as well, and our method shows similar
performance to theirs for these examples. However, we com-
pare our method, which we will label VIdmfa, not only to
the approach of Viroli and McLachlan (2019) (EMdgmm)
but to several other benchmark methods, including a GMM
based on the EM algorithm (EMgmm) and Bayesian VI
approach by McGrory and Titterington (2007) (VIgmm), a
skew-normal mixture (SNmm), a skew-t mixture (STmm),
k-means (kmeans), partition around metroids (PAM), hier-
archical clustering with Ward distance (Hclust), a factor
mixture analyzer (FMA) and a mixture of factor analyzer
(MFA). In the Web Appendix B, we give more details on all
benchmark methods. To measure how close a set of clusters
is to the ground truth labels, we consider three popular per-
formance measures (e.g., Vinh et al. (2010)). These are the
misclassification rate (MR), the adjusted rand index (ARI)
and the adjusted mutual information (AMI). We refer to the
WebAppendixC for details on tuning of benchmarkmethods
as well as measures of performance and focus on the main
results in the following.

4.2 Datasets

Below we describe the two simulated scenarios S1 and S2
involving sparsity, as well as the five real datasets used in
Viroli and McLachlan (2019).
Scenario S1: Sparse location scale mixture. Datasets with
D(0) = 30 features are drawn from a mixture of high-
dimensional Gaussian distributions with sparse covariance
structure. The first 15 of the features yield information on
the clusters and are obtained from a mixture of K = 5 Gaus-
sian distributions with different means μk and covariances
�k . The mean for component k = 1, . . . , 5 has entries

(μk) j =
{

−1 if k divides j

1 otherwise,

for j = 1, . . . , 15. The covariance matrices �k are drawn
independently based on the Cholesky factors via the function
make_sparse_spd_matrix from the Python package
scikit-learn (Pedregosa et al. 2011). An entry of the
Cholesky factors of �k is set to zero with a probability α =
0.95 and all nonzero entries are assumed to be in the inter-
val [0.4, 0.7]. The 15 noise (irrelevant) features are drawn
independently from an N (0, 1) distribution. The number of
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elements in each cluster is discrete uniformly distributed as
U{50, 200} leading to datasets of sizes n ∈ [250, 1000]. This
clustering task is not as easy as it might first appear, since
only half of the features contain any information on the class-
labels.
Scenario S2: Cyclic data:We follow Yeung et al. (2001) and
generate synthetic datamodeling a sinusoidal cyclic behavior
of gene expressions over time. We simulate n = 235 genes
under D(0) = 24 experiments in K = 10 classes. Two genes
belong to the same class if they have similar phase shifts.
Each element of the data matrix yi j with i = 1, . . . , n and
j = 1, . . . , D(0) is simulated as

yi j = δ j + λ j

[
αi + βi sin

(
2π j

8
− ωk + εi j

)]
,

where αi ∼ N (0, 1) represents the average expression level
of gene i , βi ∼ N (3, 0.5) is the amplitude control of gene
i , λ j ∼ N (3, 0.5) models the amplitude control of con-
dition j , while the additive experimental error δ j and the
idiosyncratic noise εi j are drawn independently fromN (0, 1)
distributions. The different classes are represented by ωk ,
k = 1, . . . , K , which are assumed to be uniformly distributed
in [0, 2π ], such that ωk ∼ U(0, 2π). The sizes of the classes
are generated according to Zipf’s law, meaning that gene
i is in class k with probability proportional to k−1. Each
observation vector yi = (yi1, . . . , yiD(0) )� is individually
standardized to have zero mean and unit variance. Recover-
ing the class labels from the data can be difficult, because the
classes are very unbalanced and some classes are very small.
On average, only eight observations belong to cluster k = 10.
Furthermore, it is hard to distinguish between classes k and
k′ if ωk is close to ωk′ .
Wine data: The dataset from the R-package whitening
(Strimmer et al. 2020) describes 27 properties of 178 samples
of wine from three grape varieties (59 Barolo; 71Grignolino;
48 Barbera) as reported in Forina et al. (1986).
Olive data: The dataset from the R-package cepp (Dayal
2016) contains percentage composition of eight fatty acids
found by lipid fraction of 572 Italian olive oils from three
regions (323 Southern Italy; 98 Sardinia; 151Northern Italy),
see Forina et al. (1983).
Ecoli data: This dataset from (Dua andGraff 2017) describes
the amino acid sequences of 336 proteins using seven fea-
tures provided by Horton and Nakai (1996). The class is
the localization site (143 cytoplasm; 77 inner membrane
without signal sequence; 52 perisplasm; 35 inner membrane,
uncleavable signal sequence; 20 outer membrane; five outer
membrane lipoprotein; two inner membrane lipoprotein; two
inner membrane; cleavable signal sequence).
Vehicle data: This dataset from the R-package mlbench
(Leisch andDimitriadou2010) describes the silhouette of one
of four types of vehicles, using a set of 19 features extracted

from the silhouette. It consists of 846 observations (218 dou-
ble decker bus; 199 Chevrolet van; 217 Saab 9000; 212 Opel
manta 400).
Satellite data: This dataset from (Dua and Graff 2017) con-
sists of four digital images of the same scene in different
spectral bands structured into a 3× 3 square of pixels defin-
ing the neighborhood structure. There are 36 pixels which
define the features. We use all 6435 scenes (1533 red soil;
703 cotton crop; 1358 gray soil; 626 damp gray soil; 707
soil with vegetation stubble; 1508 very damp gray soil) as
observations.

All real datasets are mean-centered and componentwise
scaled to have unit variance.

4.3 Results

To compare the overall clustering performance, we assume
in a first step that the true number of clusters is known and
fixed for all methods. Data-driven choice of the number of
clusters is considered later. For Scenarios S1 and S2, R =
100 datasets were independently generated. Boxplots of the
ARI, AMI and MR across replicates are presented in Fig. 3
for S1 and S2. Our method outperforms other approaches in
both simulated scenarios. Even though the data generating
process in Scenario S1 is a GMM, VIdmfa outperforms the
classical GMM. One reason for this is that the data simulated
in S1 is relatively noisy, and all information regarding the
clusters is contained in a subspace smaller than the number
of features. This is not only an assumption for VIdmfa, but
also for FMAandMFA.However, compared to the latter two,
VIdmfa is able to better recover the sparsity of the covariance
matrices due to the shrinkage prior as Fig. 4 demonstrates.
The clusters derived byVIdmfa areGaussian in this scenario,
because only one component was assigned positive weight
in the deeper layer.

The data generating process of Scenario S2 is non-
Gaussian and so are the clusters derived by VIdmfa, due
to the fact that the deeper layer might have multiple com-
ponents. The performance on the real data examples is
summarized in Table 1. Here, our approach is competitive
with the other methods considered, but does not outperform
the EMdgmm approach. On these low-dimensional example
datasets, EMdgmm converges substantially faster compared
to VBdmfa, but on large-scale datasets, such as the taxi data
considered in Sect. 6, the EMdgmm implementation with-
out mini-batching in the deepgmm package is not feasible
anymore, and VBdmfa is a good alternative.

The assumption that the number of clusters is known is
an artificial one. Clustering is often the starting point of the
data investigation process and used to discover structure in
the data. Selecting the number of clusters in those settings
is sometimes a difficult task. In Bayesian mixture model-
ing, this difficulty can be overcome by initializing the model
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Fig. 3 Scenario S1 (a) and Scenario S2 (b). Boxplots summarize row-
wise the MR, ARI across 100 replications. Here, we present only the
best performing methods to make the plots more informative. A plot

containing all benchmark methods and runs outside the interquartile
range can be found in the Web Appendix C.3
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Fig. 4 Scenario S1. Heat maps of the true, the empirical and the estimated covariance matrices for each of the 5 clusters. For the calculation of the
empirical covariance matrices, the true labels of the data points were used, which are not available in practice

with a relatively large number of components and using a
shrinkage prior on the component weights, so that unneces-
sary components emptyout (Rousseau andMengersen2011).
This is also the idea of our model selection process described
in Sect. 3.7. To indicate that this is also a valid approach for
VIdmfa, we fit both Scenarios S1, S2 for different choices
of K (0) ranging from 2 to 16 and compare the average ARI
and AMI over 10 independent replicates. The results can be
found in Fig. 5. This suggests that our method is able to find
the general structure of the data evenwhen K (0) is larger than
necessary, but the best results are derived when the model is
initialized with the correct number of components. We have
found it useful to fit themodelwith a potentially large number
of components and then to refit the model with the number of
components selected. This observation justifies our approach
to selecting the number of components for the deeper layers
discussed in Sect. 3.7. In both real data examples, the optimal
model architecture is unknown and VIdmfa selects a reason-
able model.

5 Application to gene expression data

In microarray experiments, levels of gene expression for a
large number of genes are measured under different experi-

mental conditions. In this example, we consider a time course
experiment where the data can be represented by a real-
valued expression matrix {mi j , 1 ≤ i ≤ n, 1 ≤ j ≤ D},
wheremi j is the expression level of gene i at time j . We will
consider rows of this matrix to be observations, so that we
are clustering the genes according to the time series of their
expression values.

Our model is well suited to the analysis of gene expres-
sion datasets. In many time course microarray experiments,
both the number of genes and times is large, and our VIdmfa
method scales well with both the sample size and dimen-
sion. If the time series expression profiles are smooth, their
dependence may be well represented using low-rank factor
structure. Our VIdmfa method also provides a computation-
ally efficient mechanism for the choice of the number of
mixture components. In the simulated Scenario S2 of Sect. 4,
VIdmfa is able to detect unbalanced and comparable small
clusters,which is themain advantage of ourVIdmfa approach
in comparisonwith the benchmarkmethods on this simulated
gene expression dataset and a similar behavior is expected in
real data applications.

As an example, we consider the Yeast dataset from Yeung
et al. (2001), originally considered in Cho et al. (1998). This
dataset has been analyzed bymany previous authors (Medve-
dovic and Sivaganesan 2002; Tamayo et al. 1999; Lukashin
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Table 1 The MR, ARI and AMI for the real datasets rounded to three
decimals are given and the best result is marked in each column. Fol-
lowing Viroli and McLachlan (2019), we select the best of 10 runs

according to BIC for all benchmark methods. For our VIdmfa, the best
out of 10 runs is selected according to the highest ELBO

Wine Olive Ecoli Vehicle Satellite

MR ARI AMI MR ARI AMI MR ARI AMI MR ARI AMI MR ARI AMI

kmeans 0.022 0.930 0.900 0.234 0.448 0.584 0.351 0.508 0.626 0.642 0.076 0.112 0.321 0.530 0.612

PAM 0.045 0.863 0.818 0.107 0.725 0.673 0.333 0.507 0.608 0.628 0.073 0.097 0.313 0.531 0.608

Hclust 0.045 0.865 0.845 0.386 0.493 0.671 0.333 0.518 0.624 0.634 0.092 0.114 0.397 0.446 0.577

EMgmm 0.011 0.964 0.953 0.348 0.524 0.68 0.259 0.676 0.635 0.599 0.095 0.167 0.414 0.465 0.557

SNmm 0.511 0.048 0.047 0.108 0.854 0.769 – – – 0.506 0.224 0.371 0.435 0.414 0.535

STmm 0.427 0.194 0.218 0.098 0.864 0.785 0.298 0.594 0.571 0.476 0.207 0.314 0.390 0.468 0.543

FMA 0.011 0.965 0.946 0.495 0.235 0.406 0.411 0.44 0.485 – – – 0.439 0.435 0.516

MFA 0.006 0.983 0.973 0.052 0.914 0.855 – – – 0.573 0.153 0.201 0.226 0.622 0.666

VIgmm 0.494 0.074 0.055 0.000 1.000 1.000 0.357 0.478 0.476 0.522 0.198 0.286 0.460 0.445 0.525

EMdgmm 0.006 0.982 0.936 0.000 1.000 1.000 0.173 0.765 0.710 0.506 0.204 0.238 0.246 0.624 0.635

VIdmfa 0.006 0.982 0.973 0.000 1.000 1.000 0.202 0.726 0.688 0.499 0.208 0.354 0.390 0.449 0.546

The best method according to each metric MR, ARI and AMI in each of the datasets is highlighted in bold

and Fuchs 2001) and contains n = 384 genes over two cell
cycles (D = 17 time points) whose expression levels peak
at different phases of the cell cycle. The goal is to cluster
the genes according to those peaks and the structure is simi-
lar to the simulated cyclic data in Scenario S2 from Sect. 4.
The genes were assigned to five cell cycle phases by Cho
et al. (1998), but there are other cluster assignments with
more groups available (Medvedovic and Sivaganesan 2002;
Lukashin and Fuchs 2001). Hence, the optimal number of
clusters for this dataset is unknown and we aim to illus-
trate that our VIdmfa is able to select the number of clusters
meaningfully. Also, the gene expression levels change rela-
tively quickly between time points in this dataset, suggesting
a sparse correlation structure. VIdmfa is well suited for this
scenario due to the sparsity inducing priors.

As in Scenario S2 and following Yeung et al. (2001), we
individually scale each gene to have zero mean and unit vari-
ance. The simulation study in Sect. 4 suggests that VIdmfa
can be initialized with a large number of potential compo-
nents when the number of clusters is unknown, since the
unnecessary components empty out. When initialized with
K (0) = √n� = 19 potential components, the model selec-
tion process described in Sect. 3.7 selects amodelwith L = 2
layers with dimensions D(1) = 4, D(2) = 1 and K (2) = 1
components in the second layer. VIdmfa returns twelve clus-
ters as shown in Fig. 6. While some of the clusters are small,
others are large and match well with the clusters proposed in
Cho et al. (1998). For example, cluster eleven corresponds to
their largest cluster. Comparisons to other kinds of informa-
tion would be needed to decide if all of the twelve clusters
are useful here, or if some of the clusters should be merged.
For example, clusters two and twelve peak at similar phases
of the cell cycle and could possibly be merged, while cluster

nine does not seem to have a similar cluster and could be kept
even though it contains only n9 = 6 genes. An investigation
of the fitted DMFA suggests that the clusters differ mainly by
their means, while the covariance matrices have high spar-
sity, which matches with our expectation of (distant) time
points being only weakly correlated.

6 Application to taxi trajectories

In this section, we consider a complex high-dimensional
clustering problem for taxi trajectories. We use the publicly
available data-set of Moreira-Matias et al. (2013) consisting
of all busy trajectories from 01/07/2013 to 30/06/2014 per-
formed by 442 taxis running in the city of Porto. Each taxi
reports its coordinates at 15 second intervals. The dataset
is large in dimension and sample size, with an approxi-
mate average of 50 coordinates per trajectory and 1.7million
observations in total. Understanding this dataset is a difficult
task. Kucukelbir et al. (2017) propose a subspace cluster-
ing, where they project the data into an eleven-dimensional
subspace using an extension on probabilistic principal com-
ponent analysis in a first step and then use a GMM with 30
components to cluster the lower-dimensional data in a second
step. This approach is successful in finding hidden structures
in the data like busy roads and frequently taken paths. We
will illustrate that VIdgmm is a good alternative because it
does not require a separate dimension reduction step and is
able to fit a GMMwith amuch larger number of components.
Also VIdgmm scales well with the sample size, due to the
sub-sampling approach described in Sect. 3.3.

In our analysis, we focus on the paths of the trajectories
ignoring the temporal dependencies and interpolate the data
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Fig. 5 Scenario S1 (a, b) and Scenario S2 (c, d). The average AMI (a,
c) and ARI (b, d) across 10 independent replicates for different choices
on the initial number of clusters K = 2, . . . , 16. The x-axis denotes the

initialized number of clusters and the y-axis the average AMI/ARI. The
optimal number of clusters for each dataset is denoted by the dashed
line

accordingly. Each trajectory fi can be viewed as a mapping
fi (t) : {t0, · · · , tTi } → R

2 of Ti + 1 equally spaced time
points onto coordinate pairs (xi,th , yi,th ) for h = 0, · · · , Ti
with 50 time-points on average.We consider the interpolation
f̃i : [0, 1] → R

2, where

f̃i (t) =
Ti−1∑

h=0

I
{
Li,h

Li,Ti
≤ t ≤ Li,h+1

Li,Ti

}
(t)

⎡

⎣

⎛

⎝1 −
t − Li,h

Li,Ti

Li,h+1
Li,Ti

− Li,h
Li,Ti

⎞

⎠ fi (th) +
t − Li,h

Li,Ti

Li,h+1
Li,Ti

− Li,h
Li,Ti

fi (th+1)

⎤

⎦ ,

and Li,h = ∑h−1
s=0 || fi (ts) − fi (ts+1)|| is the length of the

trajectory up to time-point th . This interpolation is time inde-
pendent in the sense that d( f̃i (t), f̃i (t + δ)) is linear in t for
all δ > 0, where di (·, ·) denotes the distance between two
points along a linear interpolation of the trajectory fi . This
way two trajectories fi and fi ′ with the same path, i.e., the
same image in R

2, have similar interpolations f̃i ≈ f̃i ′ even
when the taxi on one trajectorywasmuch slower than the taxi
on the other trajectory. Additionally, we consider a tour and
its time reversal as equivalent, and therefore change an obser-
vation to its time reversal if the origin point after reordering
is closer to the city center. We use a discretization of f̃i (t)
at 50 equally spaced points t = 0, 1

49 ,
2
49 , . . . , 1 as feature

inputs for our clustering algorithm leading to data points in
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Fig. 6 Yeast data. VIdmfa selects twelve clusters, when initialized with
K (0) = 19. For each cluster the clustermean (bold line), aswell asmini-
mumandmaximum (dotted lines) on the normalized expression patterns

are presented and n denotes the number of elements in the respective
cluster. The x-axis denotes the time and the y-axis labels the normalized
gene expression

R

100. To avoid numerical errors, all coordinates are centered
around the city center and scaled to have unit variance.

The architecture chosen has L = 2 layers with ten compo-
nents in both layers. The dimensions are set to D(1) = 5 and
D(2) = 2. This model is equivalent to a 100-dimensional
GMM with 100 components. We consider each of these
Gaussian components as a separate cluster. In fact, each
observation can be matched to one path k = (k1, k2) through
themodel, buildingGaussian clusters. This idea of linking the
different paths to the clusters leads to a natural hierarchical
clustering, where the clusters are built layer-wise. First, the
observations are divided into K (1) = 10 large main-clusters
based on the components of the first layer, where an observa-
tion is in cluster k1 if and only if γ

(1)
ik1

= 1. Those clusters are

then divided further into K (2) = 10 sub-clusters. An obser-
vation of the main cluster k1 is in sub-cluster k2 if γ

(1)
ik1

= 1

and γ
(2)
ik2

= 1, leading to a potential of K (1) × K (2) = 100
clusters in total. A graphical representation of this idea based
on our fitted DGMM can be found in Fig. 7.

Even though this hierarchical representation has no very
clear interpretation for all clusters, it might be used as a start-

ing point for further exploration. City planners and urban
decisionmakers could be interested in a comparison between
start and end points of trajectories in the various clusters to
further evaluate the need of connections, for example, via
public transport, between different regions of the city. Here,
the nested structure of the clusters might be helpful, when
scanning the clusters for interesting patterns. The 10 large
main clusters based on the first layer give a broad overview,
while the sub-clusters allow for a more nuanced analysis. An
example is given in Fig. 8.

7 Conclusion and discussion

In this paper, we introduced a new method for high-
dimensional clustering. The method uses sparsity-inducing
priors to regularize the estimation of the DMFA model of
Viroli and McLachlan (2019), and uses variational infer-
ence methods for computation to achieve scalability to large
datasets. We consider the use of overfitted mixtures and
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Fig. 7 Taxi data. The nested clustering for 10000 randomly selected
trajectories is shown. There are ten non-empty components in the first
layer and nine non-empty components in the second layer, correspond-
ing to aGMMwith 90 components shown in the first row. These clusters

can be divided into ten subsets (second row) containing up to nine clus-
ters each. The ten subsets are shown in the second row. Note, that many
trajectories connect to endpoints outside the shown region. The map
was taken from OpenStreetMap

Fig. 8 Taxi data. VIdmfa detects two clusters consisting of short tra-
jectories connected to the harbor and seaside. Both clusters belong to
the samemain cluster 6. Cluster (6, 3) connects to a larger region on the
west side of the city outside the center with the taxis passing through

smaller streets, while cluster (6, 5) connects to the city center. Here, the
Taxis pass through one of three parallels. The dots denote starting and
end points of the trajectories
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ELBO values from short runs to choose a suitable architec-
ture in a computationally thrifty way.

As noted recently by Selosse et al. (2020) deep latent vari-
ablemodels like theDMFAare challenging to fit. It is difficult
to estimate large numbers of latent variables, and there are
many local modes in the likelihood function. While our spar-
sity priors are helpful in some cases for obtaining improved
clustering and making the estimation more reliable, there is
much more work to be done in understanding and robustify-
ing the training of these models. The way that parameters for
mixture components at different layers are combined by con-
sidering all paths through the network allows a large number
of mixture components without a large number of param-
eters, but this feature may also result in probability mass
being put in regions where there is no data. It is also not easy
to interpret how the deeper layers of these models assist in
explaining variation. A deeper understanding of these issues
could lead to further improved architectures and interesting
new applications in high-dimensional density estimation and
regression.

Supplementary material

A Web Appendix including technical details and a more
detailed overview on the simulation study in Sect. 4 is avail-
able. Python code and data to reproduce the results of Sects.
4 to 6 along with the VIdmfa algorithm is available from the
authors on request.

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s11222-022-10132-z.
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