39,795 research outputs found

    Theory of Raman scattering from Leggett's collective mode in a multiband superconductor: Application to MgB2_2

    Full text link
    In 1966 Leggett used a two-band superconductor to show that a new collective mode could exist at low temperatures, corresponding to a counter-flow of the superconducting condensates in each band. Here, the theory of electronic Raman scattering in a superconductor by Klein and Dierker (1984) is extended to a multiband superconductor. Raman scattering creates particle/hole pairs. In the relevant A1gA_{1g}\ symmetry, the attraction that produces pairing necessarily couples excitations of superconducting pairs to these p/h excitations. In the Appendix it is shown that for zero wave vector transfer % q this coupling modifies the Raman response and makes the long-range Coulomb correction null. The 2-band result is applied to MgB2_{2} where this coupling activates Leggett's collective mode. His simple limiting case is obtained when the interband attractive potential is decreased to a value well below that given by LDA theory. The peak from Leggett's mode is studied as the potential is increased through the theoretical value: With realistic MgB2_{2}\ parameters, the peak broadens through decay into the continuum above the smaller (Ï€\pi band) superconducting gap. Finite qq effects are also taken into account, yielding a Raman peak that agrees well in energy with the experimental result by Blumberg \textit{et el.} (2007). This approach is also applied to the q=0q=0, 2-band model of the Fe-pnictides considered by Chubukov \textit{et al.}(2009).Comment: 10 pages, 3 figures. To appear in Physical Review

    Metastability in stochastic dynamics of disordered mean-field models

    Get PDF
    We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to the properties of the rate functions of the corresponding Gibbs measures. We derive the analog of the Wentzell-Freidlin theory in this case, showing that any transition can be decomposed, with probability exponentially close to one, into a deterministic sequence of ``admissible transitions''. For these admissible transitions we give upper and lower bounds on the expected transition times that differ only by a constant. The distribution rescaled transition times are shown to converge to the exponential distribution. We exemplify our results in the context of the random field Curie-Weiss model.Comment: 73pp, AMSTE

    Metastability and low lying spectra in reversible Markov chains

    Get PDF
    We study a large class of reversible Markov chains with discrete state space and transition matrix PNP_N. We define the notion of a set of {\it metastable points} as a subset of the state space \G_N such that (i) this set is reached from any point x\in \G_N without return to x with probability at least bNb_N, while (ii) for any two point x,y in the metastable set, the probability Tx,y−1T^{-1}_{x,y} to reach y from x without return to x is smaller than aN−1≪bNa_N^{-1}\ll b_N. Under some additional non-degeneracy assumption, we show that in such a situation: \item{(i)} To each metastable point corresponds a metastable state, whose mean exit time can be computed precisely. \item{(ii)} To each metastable point corresponds one simple eigenvalue of 1−PN1-P_N which is essentially equal to the inverse mean exit time from this state. The corresponding eigenfunctions are close to the indicator function of the support of the metastable state. Moreover, these results imply very sharp uniform control of the deviation of the probability distribution of metastable exit times from the exponential distribution.Comment: 44pp, AMSTe

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors

    Full text link
    Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi_2Sr_2CaCu_2O_{8 \pm \delta} superconductors. For underdoped superconductors, short range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c, the system exhibits a sharp Raman resonance of B_{1g} symmetry and energy of 75 meV and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 6 pages, 4 color figures, PDF forma

    Non-resonant Raman response of inhomogeneous structures in the electron doped t−t′t-t' Hubbard model

    Full text link
    We calculate the non-resonant Raman response, the single particle spectra and the charge-spin configuration for the electron doped t−t′t-t' Hubbard model using unrestricted Hartree-Fock calculations. We discuss the similarities and differences in the response of homogeneous versus inhomogeneous structures. Metallic antiferromagnetism dominates in a large region of the U−nU-n phase diagram but at high values of the on-site interaction and for intermediate doping values, inhomogeneous configurations are found with lower energy. This result is in contrast with the case of hole doped cuprates where inhomogeneities are found already at very low doping. The inhomogeneities found are in-phase stripes compatible with inelastic neutron scattering experiments. They give an incoherent background in the Raman response. The B2gB_{2g} signal can show a quasiparticle-like component even when no Fermi surface is found in the nodal direction.Comment: 8 pages, 10 figures, accepted for publication in Phys. Rev.

    Evidence for electron-phonon interaction in Fe1−x_{1-x}Mx_{x}Sb2_{2} (M=Co, Cr) single crystals

    Full text link
    We have measured polarized Raman scattering spectra of the Fe1−x_{1-x}Cox_{x}Sb2_{2} and Fe1−x_{1-x}Crx_{x}Sb2_{2} (0≤x≤\leq x\leq 0.5) single crystals in the temperature range between 15 K and 300 K. The highest energy B1gB_{1g} symmetry mode shows significant line asymmetry due to phonon mode coupling width electronic background. The coupling constant achieves the highest value at about 40 K and after that it remains temperature independent. Origin of additional mode broadening is pure anharmonic. Below 40 K the coupling is drastically reduced, in agreement with transport properties measurements. Alloying of FeSb2_2 with Co and Cr produces the B1g_{1g} mode narrowing, i.e. weakening of the electron-phonon interaction. In the case of Ag_{g} symmetry modes we have found a significant mode mixing

    Identification of Bare-Airframe Dynamics from Closed-Loop Data Using Multisine Inputs and Frequency Responses

    Get PDF
    Amethod is presented for computing multiple-input multiple-output frequency responses of bare-airframe dynamics for systems excited using orthogonal phase-optimized multisines and including correlated data arising from control mixing or feedback control. The estimation was posed as the solution to an underdetermined system of linear equations, for which additional information was supplied using interpolation of the frequency responses. A simulation model of the NASA T-2 aircraft having two inputs and two outputs was used to investigate the method in the open-loop configuration and under closed-loop control. The method was also applied to flight test data from the X-56A aeroelastic demonstrator having five inputs and ten outputs and flying under closed-loop control with additional control allocation mixing. Results demonstrated that the proposed method accurately estimates the bare airframe frequency responses in the presence of correlated data from control mixing and feedback control. Results also agreed with estimates obtained using different methods that are less sensitive to correlated inputs

    Photoinduced Fano-resonance of coherent phonons in zinc

    Get PDF
    Utilizing femtosecond optical pump-probe technique, we have studied transient Fano-resonance in zinc. At high excitation levels the Fourier spectrum of the coherent E2g_{2g} phonon exhibits strongly asymmetric line shape, which is well modeled by the Fano function. The Fano parameter (1/Q) was found to be strongly excitation fluence dependent while depending weakly on the initial lattice temperature. We attribute the origin of the Fano-resonance to the coupling of coherent phonon to the electronic continuum, with their transition probabilities strongly renormalized in the vicinity of the photoinduced structural transition.Comment: 5 pages, 3 figures, to be published in Physical Review

    Evolution of the Kondo resonance feature and its relationship to spin-orbit coupling across the quantum critical point in Ce2Rh{1-x}CoxSi3

    Get PDF
    We investigate the evolution of the electronic structure of Ce2Rh{1-x}CoxSi3 as a function of x employing high resolution photoemission spectroscopy. Co substitution at the Rh sites in antiferromagnetic Ce2RhSi3 leads to a transition from an antiferromagnetic system to a Kondo system, Ce2CoSi3 via the Quantum Critical Point (QCP). High resolution photoemission spectra reveal distinct signature of the Kondo resonance feature (KRF) and its spin orbit split component (SOC) in the whole composition range indicating finite Kondo temperature scale at the quantum critical point. We observe that the intensity ratio of the Kondo resonance feature and its spin orbit split component, KRF/SOC gradually increases with the decrease in temperature in the strong hybridization limit. The scenario gets reversed if the Kondo temperature becomes lower than the magnetic ordering temperature. While finite Kondo temperature within the magnetically ordered phase indicates applicability of the spin density wave picture at the approach to QCP, the dominant temperature dependence of the spin-orbit coupled feature suggests importance of spin-orbit interactions in this regime.Comment: 6 figure
    • …
    corecore