2,325 research outputs found

    NFPA Fluid Powered Vehicle Challenge 2023

    Get PDF
    This report includes the design process undergone by Team Shifty in designing a vehicle for the NFPA’s Fluid Powered Vehicle challenge. The report covers the background of the competition, research done by the team, engineering specifications for the design, preliminary and final designs, the manufacturing plan and process, project management details, and several recommendations for future teams participating in the challenge. The National Fluid Power Association, NFPA, is a trade association with the goal of connecting fluid power companies and advancing fluid power. With the goal of advancement in mind, NFPA hosts an annual Fluid Powered Vehicle Challenge (FPVC). Since before the NFPA took over this challenge, Cal Poly has produced a team to compete. Team Shifty completed research into past Cal Poly teams as well as other competing university teams to define the engineering specifications for the new vehicle and decide the design directions. The final design includes a new frame to address issues with the last teams frame, a new hydraulic circuit design and selection of new components to improve the circuits performance in the FPVC events and reduce losses, and the addition of gear shifting to the vehicle. With respect to hydraulics, a new manifold was sourced to accommodate the simplified fluid circuit, along with a larger motor to allow the vehicle to operate at higher torque. The prior team’s pneumatic system was completely replaced by a pneumatic front gear shifting system. The electronics implemented was the same system as the previous year, including an STM microcontroller, Nextion touch screen display, and Hydraforce valve operator with only two solenoid valves. Working together, these components allowed the rider to toggle between three unique drive modes, including: direct, regen, and sprint. To produce a functional vehicle, research and planning was put into manufacturing and assembly processes as detailed in the manufacturing plan. The final product failed to perform as proposed in Team Shifty’s Scope of Work, as the vehicle’s rear chain consistently fell off during operation at the competition. This resulted in the vehicle not placing during a few of the challenges, including the Sprint and Endurance races. The cause of this failure was a function of the frame flexing under dynamic loading due to insufficient torsional stiffness, as well as the rear chain being too small to handle the large output torque of the upsized rear motor

    A Bayesian Approach to Calibrating Period-Luminosity Relations of RR Lyrae Stars in the Mid-Infrared

    Full text link
    A Bayesian approach to calibrating period-luminosity (PL) relations has substantial benefits over generic least-squares fits. In particular, the Bayesian approach takes into account the full prior distribution of the model parameters, such as the a priori distances, and refits these parameters as part of the process of settling on the most highly-constrained final fit. Additionally, the Bayesian approach can naturally ingest data from multiple wavebands and simultaneously fit the parameters of PL relations for each waveband in a procedure that constrains the parameter posterior distributions so as to minimize the scatter of the final fits appropriately in all wavebands. Here we describe the generalized approach to Bayesian model fitting and then specialize to a detailed description of applying Bayesian linear model fitting to the mid-infrared PL relations of RR Lyrae variable stars. For this example application we quantify the improvement afforded by using a Bayesian model fit. We also compare distances previously predicted in our example application to recently published parallax distances measured with the Hubble Space Telescope and find their agreement to be a vindication of our methodology. Our intent with this article is to spread awareness of the benefits and applicability of this Bayesian approach and encourage future PL relation investigations to consider employing this powerful analysis method.Comment: 6 pages, 1 figure. Accepted for publication in Astrophysics & Space Science. Following a presentation at the conference The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201

    Reactivation of Latent Tuberculosis in Cynomolgus Macaques Infected with SIV Is Associated with Early Peripheral T Cell Depletion and Not Virus Load

    Get PDF
    HIV-infected individuals with latent Mycobacterium tuberculosis (Mtb) infection are at significantly greater risk of reactivation tuberculosis (TB) than HIV-negative individuals with latent TB, even while CD4 T cell numbers are well preserved. Factors underlying high rates of reactivation are poorly understood and investigative tools are limited. We used cynomolgus macaques with latent TB co-infected with SIVmac251 to develop the first animal model of reactivated TB in HIV-infected humans to better explore these factors. All latent animals developed reactivated TB following SIV infection, with a variable time to reactivation (up to 11 months post-SIV). Reactivation was independent of virus load but correlated with depletion of peripheral T cells during acute SIV infection. Animals experiencing reactivation early after SIV infection (<17 weeks) had fewer CD4 T cells in the periphery and airways than animals reactivating in later phases of SIV infection. Co-infected animals had fewer T cells in involved lungs than SIV-negative animals with active TB despite similar T cell numbers in draining lymph nodes. Granulomas from these animals demonstrated histopathologic characteristics consistent with a chronically active disease process. These results suggest initial T cell depletion may strongly influence outcomes of HIV-Mtb co-infection

    The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    Full text link
    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolution surveys and narrow field of view, and high resolution observations of substructure within molecular cloud cores. The first science flight will be from McMurdo Station, Antarctica in December 2010.Comment: 14 pages, 9 figures Submitted to SPIE Astronomical Telescopes and Instrumentation Conference 201

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    Over half of the far-infrared background light comes from galaxies at z >= 1.2

    Full text link
    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z <= 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microns in the rest frame. At 1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microns. Combining our results at 500 microns with those at 24 microns, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info

    Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies

    Get PDF
    Recently identified broadly neutralizing antibodies (bNAbs) that potently neutralize most HIV-1 strains are key to potential antibody-based therapeutic approaches to combat HIV/AIDS in the absence of an effective vaccine. Increasing bNAb potencies and resistance to common routes of HIV-1 escape through mutation would facilitate their use as therapeutics. We previously used structure-based design to create the bNAb NIH45-46G54W, which exhibits superior potency and/or breadth compared with other bNAbs. We report new, more effective NIH45-46^(G54W) variants designed using analyses of the NIH45-46–gp120 complex structure and sequences of NIH45-46^(G54W)–resistant HIV-1 strains. One variant, 45-46m2, neutralizes 96% of HIV-1 strains in a cross-clade panel and viruses isolated from an HIV-infected individual that are resistant to all other known bNAbs, making it the single most broad and potent anti–HIV-1 antibody to date. A description of its mechanism is presented based on a 45-46m2–gp120 crystal structure. A second variant, 45-46m7, designed to thwart HIV-1 resistance to NIH45-46G54W arising from mutations in a gp120 consensus sequence, targets a common route of HIV-1 escape. In combination, 45-46m2 and 45-46m7 reduce the possible routes for the evolution of fit viral escape mutants in HIV-1_(YU-2)–infected humanized mice, with viremic control exhibited when a third antibody, 10–1074, was added to the combination

    BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths

    Get PDF
    We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are available at http://blastexperiment.info

    Submillimeter Number Counts From Statistical Analysis of BLAST Maps

    Full text link
    We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyse BLAST observations of a roughly 10 sq. deg. map centered on the Great Observatories Origins Deep Survey South (GOODS-S) field. We provide estimates of number counts at the three BLAST wavelengths, 250, 350, and 500 microns; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power-laws. We observe a generally very steep slope for the counts of about -3.7 at 250 microns and -4.5 at 350 and 500 microns, over the range ~0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well-suited for analysis of data from the Herschel satellite.Comment: Accepted for publication in the Astrophysical Journal; see associated data and other papers at http://blastexperiment.info
    • …
    corecore