2,795 research outputs found

    A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory

    Get PDF
    An exact solution of the source-free Kaluza-Klein field equations is presented. It is a 5D generalization of the Robinson-Trautman quasi-spherical gravitational wave with a cosmological constant. The properties of the 5D solution are briefly described.Comment: 10 pages Latex, Revtex, submitted to GR

    Two-Dilaton Theories in Two Dimensions from Dimensional Reduction

    Full text link
    Dimensional reduction of generalized gravity theories or string theories generically yields dilaton fields in the lower-dimensional effective theory. Thus at the level of D=4 theories, and cosmology many models contain more than just one scalar field (e.g. inflaton, Higgs, quintessence). Our present work is restricted to two-dimensional gravity theories with only two dilatons which nevertheless allow a large class of physical applications. The notions of factorizability, simplicity and conformal simplicity, Einstein form and Jordan form are the basis of an adequate classification. We show that practically all physically motivated models belong either to the class of factorizable simple theories (e.g. dimensionally reduced gravity, bosonic string) or to factorizable conformally simple theories (e.g. spherically reduced Scalar-Tensor theories). For these theories a first order formulation is constructed straightforwardly. As a consequence an absolute conservation law can be established.Comment: 23 pages, 1 tabl

    A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6

    Full text link
    The invention of the "dual resonance model" N-point functions BN motivated the development of current string theory. The simplest of these models, the four-point function B4, is the classical Euler Beta function. Many standard methods of complex analysis in a single variable have been applied to elucidate the properties of the Euler Beta function, leading, for example, to analytic continuation formulas such as the contour-integral representation obtained by Pochhammer in 1890. Here we explore the geometry underlying the dual five-point function B5, the simplest generalization of the Euler Beta function. Analyzing the B5 integrand leads to a polyhedral structure for the five-crosscap surface, embedded in RP5, that has 12 pentagonal faces and a symmetry group of order 120 in PGL(6). We find a Pochhammer-like representation for B5 that is a contour integral along a surface of genus five. The symmetric embedding of the five-crosscap surface in RP5 is doubly covered by a symmetric embedding of the surface of genus four in R6 that has a polyhedral structure with 24 pentagonal faces and a symmetry group of order 240 in O(6). The methods appear generalizable to all N, and the resulting structures seem to be related to associahedra in arbitrary dimensions.Comment: 43 pages and 44 figure

    Gravity from Spinors

    Full text link
    We investigate a possible unified theory of all interactions which is based only on fundamental spinor fields. The vielbein and metric arise as composite objects. The effective quantum gravitational theory can lead to a modification of Einstein's equations due to the lack of local Lorentz-symmetry. We explore the generalized gravity with global instead of local Lorentz symmetry in first order of a systematic derivative expansion. At this level diffeomorphisms and global Lorentz symmetry allow for two new invariants in the gravitational effective action. The one which arises in the one loop approximation to spinor gravity is consistent with all present tests of general relativity and cosmology. This shows that local Lorentz symmetry is tested only very partially by present observations. In contrast, the second possible new coupling is severely restricted by present solar system observations.Comment: New material on absence of observational tests of local Lorentz invariance, 21 pages, to appear in Phys.Rev.

    Cosmic strings in axionic-dilatonic gravity

    Get PDF
    We first consider local cosmic strings in dilaton-axion gravity and show that they are singular solutions. Then we take a supermassive Higgs limit and present expressions for the fields at far distances from the core by applying a Pecci-Quinn and a duality transformation to the dilatonic Melvin's magnetic universe.Comment: Latex file. 16 page

    TriggerZoo: A Dataset of Android Applications Automatically Infected with Logic Bombs

    Get PDF
    Many Android apps analyzers rely, among other techniques, on dynamic analysis to monitor their runtime behavior and detect potential security threats. However, malicious developers use subtle, though efficient, techniques to bypass dynamic analyzers. Logic bombs are examples of popular techniques where the malicious code is triggered only under specific circumstances, challenging comprehensive dynamic analyses. The research community has proposed various approaches and tools to detect logic bombs. Unfortunately, rigorous assessment and fair comparison of state-of-the-art techniques are impossible due to the lack of ground truth. In this paper, we present TriggerZoo, a new dataset of 406 Android apps containing logic bombs and benign trigger-based behavior that we release only to the research community using authenticated API. These apps are real-world apps from Google Play that have been automatically infected by our tool AndroBomb. The injected pieces of code implementing the logic bombs cover a large pallet of realistic logic bomb types that we have manually characterized from a set of real logic bombs. Researchers can exploit this dataset as ground truth to assess their approaches and provide comparisons against other tools

    Consistent Group and Coset Reductions of the Bosonic String

    Full text link
    Dimensional reductions of pure Einstein gravity on cosets other than tori are inconsistent. The inclusion of specific additional scalar and p-form matter can change the situation. For example, a D-dimensional Einstein-Maxwell-dilaton system, with a specific dilaton coupling, is known to admit a consistent reduction on S^2= SU(2)/U(1), of a sort first envisaged by Pauli. We provide a new understanding, by showing how an S^3=SU(2) group-manifold reduction of (D+1)-dimensional Einstein gravity, of a type first indicated by DeWitt, can be broken into in two steps; a Kaluza-type reduction on U(1) followed by a Pauli-type coset reduction on S^2. More generally, we show that any D-dimensional theory that itself arises as a Kaluza U(1) reduction from (D+1) dimensions admits a consistent Pauli reduction on any coset of the form G/U(1). Extensions to the case G/H are given. Pauli coset reductions of the bosonic string on G= (G\times G)/G are believed to be consistent, and a consistency proof exists for S^3=SO(4)/SO(3). We examine these reductions, and arguments for consistency, in detail. The structures of the theories obtained instead by DeWitt-type group-manifold reductions of the bosonic string are also studied, allowing us to make contact with previous such work in which only singlet scalars are retained. Consistent truncations with two singlet scalars are possible. Intriguingly, despite the fact that these are not supersymmetric models, if the group manifold has dimension 3 or 25 they admit a superpotential formulation, and hence first-order equations yielding domain-wall solutions.Comment: Latex, 5 figures, 45 pages, minor correction

    Lorentz-breaking effects in scalar-tensor theories of gravity

    Full text link
    In this work, we study the effects of breaking Lorentz symmetry in scalar-tensor theories of gravity taking torsion into account. We show that a space-time with torsion interacting with a Maxwell field by means of a Chern-Simons-like term is able to explain the optical activity in syncrotron radiation emitted by cosmological distant radio sources. Without specifying the source of the dilaton-gravity, we study the dilaton-solution. We analyse the physical implications of this result in the Jordan-Fierz frame. We also analyse the effects of the Lorentz breaking in the cosmic string formation process. We obtain the solution corresponding to a cosmic string in the presence of torsion by keeping track of the effects of the Chern-Simons coupling and calculate the charge induced on this cosmic string in this framework. We also show that the resulting charged cosmic string gives us important effects concerning the background radiation.The optical activity in this case is also worked out and discussed.Comment: 10 pages, no figures, ReVTex forma

    A First Look at Android Applications in Google Play related to Covid-19

    Get PDF
    Due to the convenience of access-on-demand to information and business solutions, mobile apps have become an important asset in the digital world. In the context of the Covid-19 pandemic, app developers have joined the response effort in various ways by releasing apps that target different user bases (e.g., all citizens or journalists), offer different services (e.g., location tracking or diagnostic-aid), provide generic or specialized information, etc. While many apps have raised some concerns by spreading misinformation or even malware, the literature does not yet provide a clear landscape of the different apps that were developed. In this study, we focus on the Android ecosystem and investigate Covid-related Android apps. In a best-effort scenario, we attempt to systematically identify all relevant apps and study their characteristics with the objective to provide a First taxonomy of Covid related apps, broadening the relevance beyond the implementation of contact tracing. Overall, our study yields a number of empirical insights that contribute to enlarge the knowledge on Covid-related apps: (1) Developer communities contributed rapidly to the Covid-19, with dedicated apps released as early as January 2020; (2) Covid-related apps deliver digital tools to users (e.g., health diaries), serve to broadcast information to users (e.g., spread statistics), and collect data from users (e.g., for tracing); (3) Covid-related apps are less complex than standard apps; (4) they generally do not seem to leak sensitive data; (5) in the majority of cases, Covid-related apps are released by entities with past experience on the market, mostly official government entities or public health organizations

    From SICs and MUBs to Eddington

    Full text link
    This is a survey of some very old knowledge about Mutually Unbiased Bases (MUB) and Symmetric Informationally Complete POVMs (SIC). In prime dimensions the former are closely tied to an elliptic normal curve symmetric under the Heisenberg group, while the latter are believed to be orbits under the Heisenberg group in all dimensions. In dimensions 3 and 4 the SICs are understandable in terms of elliptic curves, but a general statement escapes us. The geometry of the SICs in 3 and 4 dimensions is discussed in some detail.Comment: 12 pages; from the Festschrift for Tony Sudber
    • …
    corecore