2,095 research outputs found

    Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction.

    Get PDF
    Mass extinctions have repeatedly shaped global biodiversity. The Cretaceous-Paleogene (K-Pg) mass extinction caused the demise of numerous vertebrate groups, and its aftermath saw the rapid diversification of surviving mammals, birds, frogs, and teleost fishes. However, the effects of the K-Pg extinction on the evolution of snakes-a major clade of predators comprising over 3,700 living species-remains poorly understood. Here, we combine an extensive molecular dataset with phylogenetically and stratigraphically constrained fossil calibrations to infer an evolutionary timescale for Serpentes. We reveal a potential diversification among crown snakes associated with the K-Pg mass extinction, led by the successful colonisation of Asia by the major extant clade Afrophidia. Vertebral morphometrics suggest increasing morphological specialisation among marine snakes through the Paleogene. The dispersal patterns of snakes following the K-Pg underscore the importance of this mass extinction event in shaping Earth's extant vertebrate faunas

    Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy

    Get PDF
    OBJECTIVE To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. METHODS Patients with a phenotype suggestive of a motor, non-length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1. RESULTS We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features. CONCLUSION Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions

    Novel measures of cardiovascular health and its association with prevalence and progression of age-related macular degeneration: the CHARM study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine if novel measures of cardiovascular health are associated with prevalence or progression of age-related macular degeneration (AMD).</p> <p>Methods</p> <p>Measures of the cardiovascular system: included intima media thickness (IMT), pulse wave velocity (PWV), systemic arterial compliance (SAC), carotid augmentation index (AI). For the prevalence study, hospital-based AMD cases and population-based age- and gender-matched controls with no signs of AMD in either eye were enrolled. For the progression component, participants with early AMD were recruited from two previous studies; cases were defined as progression in one or both eyes and controls were defined as no progression in either eye.</p> <p>Results</p> <p>160 cases and 160 controls were included in the prevalence component. The upper two quartiles of SAC, implying good cardiovascular health, were significantly associated with increased risk of AMD (OR = 2.54, 95% CL = 1.29, 4.99). High PWV was associated with increased prevalent AMD. Progression was observed in 82 (32.3%) of the 254 subjects recruited for the progression component. Higher AI (worse cardiovascular function) was protective for AMD progression (OR = 0.30, 95%CL = 0.13, 0.69). Higher aortic PWV was associated with increased risk of AMD progression; the highest risk was seen with the second lowest velocity (OR = 6.22, 95% CL = 2.35, 16.46).</p> <p>Conclusion</p> <p>The results were unexpected in that better cardiovascular health was associated with increased risk of prevalent AMD and progression. Inconsistent findings between the prevalence and progression components could be due to truly different disease etiologies or to spurious findings, as can occur with inherent biases in case control studies of prevalence. Further investigation of these non-invasive methods of characterizing the cardiovascular system should be undertaken as they may help to further elucidate the role of the cardiovascular system in the etiology of prevalent AMD and progression.</p

    Cataract research using electronic health records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The eMERGE (electronic MEdical Records and Genomics) network, funded by the National Human Genome Research Institute, is a national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic health record (EHR) systems for large-scale, high-throughput genetic research. Marshfield Clinic is one of five sites in the eMERGE network and primarily studied: 1) age-related cataract and 2) HDL-cholesterol levels. The purpose of this paper is to describe the approach to electronic evaluation of the epidemiology of cataract using the EHR for a large biobank and to assess previously identified epidemiologic risk factors in cases identified by electronic algorithms.</p> <p>Methods</p> <p>Electronic algorithms were used to select individuals with cataracts in the Personalized Medicine Research Project database. These were analyzed for cataract prevalence, age at cataract, and previously identified risk factors.</p> <p>Results</p> <p>Cataract diagnoses and surgeries, though not type of cataract, were successfully identified using electronic algorithms. Age specific prevalence of both cataract (22% compared to 17.2%) and cataract surgery (11% compared to 5.1%) were higher when compared to the Eye Diseases Prevalence Research Group. The risk factors of age, gender, diabetes, and steroid use were confirmed.</p> <p>Conclusions</p> <p>Using electronic health records can be a viable and efficient tool to identify cataracts for research. However, using retrospective data from this source can be confounded by historical limits on data availability, differences in the utilization of healthcare, and changes in exposures over time.</p

    Current ecotoxicity testing needs among selected U.S. federal agencies

    Get PDF
    U.S. regulatory and research agencies use ecotoxicity test data to assess the hazards associated with substances that may be released into the environment, including but not limited to industrial chemicals, pharmaceuticals, pesticides, food additives, and color additives. These data are used to conduct hazard assessments and evaluate potential risks to aquatic life (e.g., invertebrates, fish), birds, wildlife species, or the environment. To identify opportunities for regulatory uses of non-animal replacements for ecotoxicity tests, the needs and uses for data from tests utilizing animals must first be clarified. Accordingly, the objective of this review was to identify the ecotoxicity test data relied upon by U.S. federal agencies. The standards, test guidelines, guidance documents, and/or endpoints that are used to address each of the agencies’ regulatory and research needs regarding ecotoxicity testing are described in the context of their application to decision-making. Testing and information use, needs, and/or requirements relevant to the regulatory or programmatic mandates of the agencies taking part in the Interagency Coordinating Committee on the Validation of Alternative Methods Ecotoxicology Workgroup are captured. This information will be useful for coordinating efforts to develop and implement alternative test methods to reduce, refine, or replace animal use in chemical safety evaluations

    Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch

    Get PDF
    Single-stranded RNAs (ssRNAs) are ubiquitous RNA elements that serve diverse functional roles. Much of our understanding of ssRNA conformational behavior is limited to structures in which ssRNA directly engages in tertiary interactions or is recognized by proteins. Little is known about the structural and dynamic behavior of free ssRNAs at atomic resolution. Here, we report the collaborative application of nuclear magnetic resonance (NMR) and replica exchange molecular dynamics (REMD) simulations to characterize the 12 nt ssRNA tail derived from the prequeuosine riboswitch. NMR carbon spin relaxation data and residual dipolar coupling measurements reveal a flexible yet stacked core adopting an A-form-like conformation, with the level of order decreasing toward the terminal ends. An A-to-C mutation within the polyadenine tract alters the observed dynamics consistent with the introduction of a dynamic kink. Pre-ordering of the tail may increase the efficacy of ligand binding above that achieved by a random-coil ssRNA. The REMD simulations recapitulate important trends in the NMR data, but suggest more internal motions than inferred from the NMR analysis. Our study unmasks a previously unappreciated level of complexity in ssRNA, which we believe will also serve as an excellent model system for testing and developing computational force fields
    corecore