69 research outputs found

    Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition

    Get PDF
    Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma

    A rapid protocol for ribosome profiling of low input samples.

    Get PDF
    Ribosome profiling provides quantitative, comprehensive, and high-resolution snapshots of cellular translation by the high-throughput sequencing of short mRNA fragments that are protected by ribosomes from nucleolytic digestion. While the overall principle is simple, the workflow of ribosome profiling experiments is complex and challenging, and typically requires large amounts of sample, limiting its broad applicability. Here, we present a new protocol for ultra-rapid ribosome profiling from low-input samples. It features a robust strategy for sequencing library preparation within one day that employs solid phase purification of reaction intermediates, allowing to reduce the input to as little as 0.1 pmol of ∌30 nt RNA fragments. Hence, it is particularly suited for the analyses of small samples or targeted ribosome profiling. Its high sensitivity and its ease of implementation will foster the generation of higher quality data from small samples, which opens new opportunities in applying ribosome profiling

    Percutaneous transhepatic or endoscopic ultrasound-guided biliary drainage in malignant distal bile duct obstruction using a self-expanding metal stent: Study protocol for a prospective European multicenter trial (PUMa trial)

    Full text link
    Background Endoscopic ultrasound-guided biliary drainage (EUS-BD) was associated with better clinical success and a lower rate of adverse events (AEs) than fluoroscopy-guided percutaneous transhepatic biliary drainage (PTBD) in recent single center studies with mainly retrospective design and small case numbers (< 50). The aim of this prospective European multicenter study is to compare both drainage procedures using ultrasound-guidance and primary metal stent implantation in patients with malignant distal bile duct obstruction (PUMa Trial). Methods The study is designed as a non-randomized, controlled, parallel group, non-inferiority trial. Each of the 16 study centers performs the procedure with the best local expertise (PTBD or EUS-BD). In PTBD, bile duct access is performed by ultrasound guidance. EUS-BD is performed as an endoscopic ultrasound (EUS)-guided hepaticogastrostomy (EUS-HGS), EUS-guided choledochoduodenostomy (EUS-CDS) or EUS-guided antegrade stenting (EUS-AGS). Insertion of a metal stent is intended in both procedures in the first session. Primary end point is technical success. Secondary end points are clinical success, duration pf procedure, AEs graded by severity, length of hospital stay, re-intervention rate and survival within 6 months. The target case number is 212 patients (12 calculated dropouts included). Discussion This study might help to clarify whether PTBD is non-inferior to EUS-BD concerning technical success, and whether one of both interventions is superior in terms of efficacy and safety in one or more secondary endpoints. Randomization is not provided as both procedures are rarely used after failed endoscopic biliary drainage and study centers usually prefer one of both procedures that they can perform best

    DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma

    Get PDF
    Background Therapies based on targeting immune checkpoints have revolutionized the treatment of metastatic melanoma in recent years. Still, biomarkers predicting long-term therapy responses are lacking. Methods A novel approach of reference-free deconvolution of large-scale DNA methylation data enabled us to develop a machine learning classifier based on CpG sites, specific for latent methylation components (LMC), that allowed for patient allocation to prognostic clusters. DNA methylation data were processed using reference-free analyses (MeDeCom) and reference-based computational tumor deconvolution (MethylCIBERSORT, LUMP). Results We provide evidence that DNA methylation signatures of tumor tissue from cutaneous metastases are predictive for therapy response to immune checkpoint inhibition in patients with stage IV metastatic melanoma. Conclusions These results demonstrate that LMC-based segregation of large-scale DNA methylation data is a promising tool for classifier development and treatment response estimation in cancer patients under targeted immunotherapy

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches
    • 

    corecore