690 research outputs found

    Photointerpretation of Skylab photography

    Get PDF
    The author has identified the following significant results. In terms of film grain texture and object definition, the S190B color positive film is distinctly superior to the S190A films, when both are compared in the 9 x 9 inch format. Within the six S190A films, the panchromatic black and white films are superior to the infrared black and white, and the color positive film is superior to the color infrared. Minimum relief differences on the order of 500 to 100 feet could be detected by stereoscopic study, however, it is not possible to determine to what extent vegetation and cultural practices assist in such delineations. Water and wind gaps through major ridges were easily seen. Streams of third order and larger were clearly visible and easy to trace; second order streams were not identified with consistency. Differences in color, tone, and textural patterns rarely supplied clues for differentiating soils or bedrock. The separation of naturally forested areas from areas of cultivation and pasture was effective and a valuable clue to the underlying geology. Suburban and industrial developments were clearly differentiated from urban areas and surrounding agricultural fields. Soil associations could be identified on a regional basis, but no sharp boundary could be drawn separating soil associations

    An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model

    Get PDF
    An empirical model for the temperature of subsurface water entrained into the ocean mixed layer (Te) is presented and evaluated to improve sea surface temperature anomaly (SSTA) simulations in an intermediate ocean model (IOM) of the tropical Pacific. An inverse modeling approach is adopted to estimate Te from an SSTA equation using observed SST and simulated upper-ocean currents. A relationship between Te and sea surface height (SSH) anomalies is then obtained by utilizing a singular value decomposition (SVD) of their covariance. This empirical scheme is able to better parameterize Te anomalies than other local schemes and quite realistically depicts interannual variability of Te, including a nonlocal phase lag relation of Te variations relative to SSH anomalies over the central equatorial Pacific. An improved Te parameterization naturally leads to better depiction of the subsurface effect on SST variability by the mean upwelling of subsurface temperature anomalies. As a result, SSTA simulations are significantly improved in the equatorial Pacific; a comparison with other schemes indicates that systematic errors of the simulated SSTAs are significantly small apparently due to the optimized empirical Te parameterization. Cross validation and comparisons with other model simulations are made to illustrate the robustness and effectiveness of the scheme. In particular it is demonstrated that the empirical Te model constructed from one historical period can be successfully used to improve SSTA simulations in anothe

    Maintaining biosecurity in aquaculture systems: A constraint or a challenge

    Get PDF
    Biosecurity can be defined as the protection of plants, animals (including humans and associated activities) and the wider environment from the unwanted impacts of biological agents including diseases and pests. As a discipline, biosecurity can be applied at various levels. In the context of aquatic animal disease, this can range from managing the health of individual animals, through whole commercial enterprise to national or international biosecurity. The last three decades or so have seen an increase in the farming of aquatic animals worldwide – a situation compounded from a biosecurity perspective by a quantum leap in aquaculture technologies, countries and species new to aquaculture, increased international movement of juvenile animals and broodstock; all in an environment of little knowledge of the health status of source populations and the frequent emergence of new diseases. The end-result of this change has been significant farm level production losses well documented in the scientific and lay literature. The focus on increased farm level biosecurity in recent times has been in direct response to this very real threat. All aquaculture operations rely on trade (commercial exchanges) to some extent. Trade provides stock, genetic material, inputs (such as feeds, vaccines, treatments, etc.) and takes the outputs (product). Aquaculture operations are not isolated from the realities of trade and the associated biosecurity risks. This paper describes the various elements that make for good farm level biosecurity and assesses the resourcing needs against net long- and short-term benefits to production. This paper also examines the role that farm biosecurity plays in overall regional or national biosecurity systems, with particular emphasis on the Australian experience. Farm level biosecurity is placed in context with inter- or intra-national disease zoning (and compartmentalisation), national quarantine control and global biosecurity initiatives such as international disease reporting and standards setting. The necessity for on-farm biosecurity as a complement to zoning and the more traditional country quarantine requirements is emphasized

    Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    Get PDF
    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol

    Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing

    Get PDF
    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models

    On Sub-ENSO Variability

    Get PDF
    Multichannel singular spectrum analysis (MSSA) of surface zonal wind, sea surface temperature (SST), 20° isotherm depth, and surface zonal current observations (between 1990 and 2004) identifies three coupled ocean–atmosphere modes of variability in the tropical Pacific: the El Niño–Southern Oscillation (ENSO), the annual cycle, and a mode with a 14–18-month period, which is referred to as sub-ENSO in this study. The sub-ENSO mode accounts for the near 18-month (near annual) variability prior to (following) the 1997/98 El Niño event. It was strongest during this El Niño event, with SST anomalies exceeding 1°C. Sub-ENSO peak SST anomalies are ENSO-like in structure and are associated with eastward propagating heat content variations. However, the SST anomalies are preceded by and in near quadrature with relatively strong remotely forced westward propagating zonal current variations, suggesting the sub-ENSO mode arises from the zonal-advective feedback. The sub-ENSO mode is found to exist also in an intermediate complexity model (ICM) of the tropical Pacific. A heat budget analysis of the model’s sub-ENSO mode shows it indeed arises from the zonal-advective feedback. In the model, both ENSO and sub-ENSO modes coexist, but there is a weak nonlinear interaction between them. Experiments also show that the observed changes in sub-ENSO’s characteristics may be explained by changes in the relative importance of zonal and vertical advection SST tendencies

    Children and Virtual Reality: Emerging Possibilities and Challenges

    Get PDF
    Virtual Reality is fast becoming a reality, with estimates that over 200m headsets will have been sold by 2020, and the market value for VR hardware and software reaching well over $20bn by then. Key players in the market currently include PlayStation with PSVR, Facebook with Oculus Rift, Google Cardboard and Daydream, Mattel with Viewmaster, and many other brands investing in content production for various audiences. One of those audiences is young people and children. “Children and Virtual Reality” is a collaboration between Dubit, Turner, WEARVR and the COST (European Cooperation in Science and Technology) Action DigiLitEY. Dubit, Turner and WEARVR are companies that specialise in digital, TV and VR content, with an interest in developing best practices around VR and children. DigiLitEY is a five year (2013-2017) academic network that focuses on existing and emerging communicative technologies for young children. This includes wearable technologies, 3D printers, robots, augmented reality, toys and games and relevant aspects of the Internet of Things. This report brings together industry research into the effects of VR on 8 to 12 year olds, and ideas that arose from a COST funded Think Tank to explore what the research findings might mean for the use of VR by under 8s
    • …
    corecore