17 research outputs found

    Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis

    Get PDF
    The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana. The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/ CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins

    Differential N-end rule degradation of RIN4/NOI fragments generated by the AvrRpt2 effector protease.

    Get PDF
    In plants, the protein RPM1-INTERACTING PROTEIN4 (RIN4) is a central regulator of both pattern-triggered immunity and effector-triggered immunity. RIN4 is targeted by several effectors, including the Pseudomonas syringae protease effector AvrRpt2. Cleavage of RIN4 by AvrRpt2 generates potentially unstable RIN4 fragments, whose degradation leads to the activation of the resistance protein RESISTANT TO P. SYRINGAE2. Hence, identifying the determinants of RIN4 degradation is key to understanding RESISTANT TO P. SYRINGAE2–mediated effector-triggered immunity, as well as virulence functions of AvrRpt2. In addition to RIN4, AvrRpt2 cleaves host proteins from the nitrate-induced (NOI) domain family. Although cleavage of NOI domain proteins by AvrRpt2 may contribute to pattern-triggered immunity regulation, the (in)stability of these proteolytic fragments and the determinants regulating their stability remain unexamined. Notably, a common feature of RIN4, and of many NOI domain protein fragments generated by AvrRpt2 cleavage, is the exposure of a new N-terminal residue that is destabilizing according to the N-end rule. Using antibodies raised against endogenous RIN4, we show that the destabilization of AvrRpt2-cleaved RIN4 fragments is independent of the N-end rule pathway (recently renamed the N-degron pathway). By contrast, several NOI domain protein fragments are genuine substrates of the N-degron pathway. The discovery of this set of substrates considerably expands the number of known proteins targeted for degradation by this ubiquitin-dependent pathway in plants. These results advance our current understanding of the role of AvrRpt2 in promoting bacterial virulence

    Pojava mikotoksina u vodenom okolišu zbog njihove prisutnosti u usjevima

    Get PDF
    The aim of this study was to establish a relation between zearalenone contamination of crops in the Polish province of Wielkopolska and its occurrence in aquatic ecosystems close by the crop fields. Water samples were collected from water bodies such as drainage ditches, wells, or watercourses located in four agricultural areas. Moreover, control water samples were collected from the Bogdanka river, which was located outside the agricultural areas and near an urban area. Cereal samples were collected in the harvest season from each agricultural area close to tested water bodies. Zearalenone (ZEA) was found in all water and cereal samples. The highest concentrations were recorded in the postharvest season (September to October) and the lowest in the winter and spring. Mean ZEA concentrations in water ranged between 1.0 ng L-1 and 80.6 ng L-1, and in cereals from 3.72 ng g-1 to 28.97 ng g-1. Our results confi rm that mycotoxins are transported to aquatic systems by rain water through soil.Cilj ovog istraživanja bio je pojasniti učestalost pojave mikotoksina u vodenim ekosustavima i njihove korelacije sa stupnjem zaraze žitarica (uzgajanih u blizini vodospremnika), čija su zrna onečišćena (kontaminirana) mikotoksinima te problem prolaska mikotoksina kroz tlo u vodeni okoliš (onečišćenje podzemnih voda mikotoksinima). Uzorci vode prikupljeni su u regiji Wielkopolska iz vodenih tijela poput odvodnih jaraka i zdenaca, odnosno vodotoka smještenih u područjima koja se rabe za poljoprivredu. Dio uzoraka vode prikupljen je iz rijeke Bogdanka, u rubnom području grada Poznańa. U sezoni žetve sa svake poljoprivredne površine smještene u neposrednoj blizini testiranih vodenih tijela prikupljeni su uzorci žitarica. U svim analiziranim uzorcima vode i žitarica potvrđena je prisutnost zearalenona (ZEA). Najviše koncentracije mikotoksina u uzorcima sa svih poljoprivrednih površina zabilježene su u jesen nakon sezone žetve (rujan-listopad), dok su najniže vrijednosti izmjerene zimi i u proljeće. Srednje koncentracije zearalenona u vodi bile su u rasponu od 1,0 ng L-1 do 80,6 ng L-1. U žitarica je prosječna razina zearalenona iznosila 3,72 ng g-1 do 28,97 ng g-1, što govori u prilog vjerodostojnosti naše polazišne hipoteze o prijenosu mikotoksina kroz tlo nakon njihova ispiranja s površine u jarke za odvodnju

    Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet

    Get PDF
    Here, and in a companion paper by Hamrin et al. (2009) [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs) as Concentrated Generator Regions (CGRs). We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL). For both CLRs and CGRs, E and J in the GSM y (cross-tail) direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.This work is distributed under the Creative Commons Attribution 3.0 License</p

    Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    No full text
    In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.This work is distributed under the Creative Commons Attribution 3.0 License</p
    corecore