86 research outputs found

    The ecological causes of functional distinctiveness in communities

    Full text link
    Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages

    Microbial resource utilization traits and trade-offs: implications for community structure, functioning and biogeochemical impacts at present and in the future

    No full text
    Trait-based approaches provide a mechanistic framework to understand and predict the structure and functioning of microbial communities. Resource utilization traits and trade-offs are among key microbial traits that describe population dynamics and competition among microbes. Several important trade-offs have been identified for prokaryotic and eukaryotic microbial taxa that define contrasting ecological strategies and contribute to species coexistence and diversity. The shape, dimensionality and hierarchy of trade-offs may determine coexistence patterns and need to be better characterized. Laboratory measured resource utilization traits can be used to explain temporal and spatial structure and dynamics of natural microbial communities and predict biogeochemical impacts. Global environmental change can alter microbial community composition through altering resource utilization by different microbes and, consequently, may modify biogeochemical impacts of microbes

    Plant Strategies along Resource Gradients

    No full text
    International audiencePlants present a variety of defensive strategies against herbivores, broadly classified into tolerance and resistance. Since resource availability can also limit plant growth, we expect plant allocation to resource acquisition and defense to vary along resource gradients. Yet, the conditions under which one defensive strategy is favored over the other are unclear. Here, we use an eco-evolutionary model to investigate plant adaptive allocation to resource acquisition, tolerance, and resistance along a resource gradient in a simple food web module inspired by plankton communities where plants compete for a single resource and are grazed on by a shared herbivore. We show that undefended, acquisition-specialist strategies dominate under low resource supplies. Conversely, high resource supplies, which lead to high herbivore abundance because of trophic transfers, result in either the dominance of very resistant strategies or coexistence between a completely resistant strategy and a fast-growing, tolerant one. We also explore the consequences of this adaptive allocation on species biomasses. Finally, we compare our predictions to a more traditional, density-independent optimization model. We show that density dependence mediated by resources and herbivores is the cause of the increase in plant resistance along the resource gradient, as the optimization model would instead have favored tolerance

    Data from: Local interactions and self-organized spatial patterns stabilize microbial cross-feeding against cheaters

    No full text
    Mutualisms are ubiquitous, but models predict they should be susceptible to cheating. Resolving this paradox has become relevant to synthetic ecology: cooperative cross-feeding, a nutrient exchange mutualism, has been proposed to stabilize microbial consortia. Previous attempts to understand how cross-feeders remain robust to non-producing cheaters have relied on complex behavior (e.g., cheater punishment) or group selection. Using a stochastic spatial model, we demonstrate two novel mechanisms that can allow cross-feeders to outcompete cheaters, rather than just escape from them. Both mechanisms work through the spatial segregation of the resources, which prevents individual cheaters from acquiring the resources they need to reproduce. First, if microbe dispersal is low but resources are shared widely, then the cross-feeders self-organize into stable spatial patterns. Here the cross-feeders can build up where the resource they need is abundant, and send their resource to where their partner is, separating resources at regular intervals in space. Second, if dispersal is high but resource sharing is local, then random variation in population density creates small-scale variation in resource density, separating the resources from each other by chance. These results suggest that cross-feeding may be more robust than previously expected and offer strategies to engineer stable consortia

    Appendix A. A table defining parameters and variables and three figures summarizing methods and results of assays used to obtain model parameter estimates.

    No full text
    A table defining parameters and variables and three figures summarizing methods and results of assays used to obtain model parameter estimates
    • …
    corecore