48 research outputs found

    New pulsed EPR methods and their application to characterize mitochondrial complex I

    Get PDF
    Electron Paramagnetic Resonance (EPR) spectroscopy is the method of choice to study paramagnetic cofactors that often play an important role as active centers in electron transfer processes in biological systems. However, in many cases more than one paramagnetic species is contributing to the observed EPR spectrum, making the analysis of individual contributions difficult and in some cases impossible. With time-domain techniques it is possible to exploit differences in the relaxation behavior of different paramagnetic species to distinguish between them and separate their individual spectral contribution. Here we give an overview of the use of pulsed EPR spectroscopy to study the iron–sulfur clusters of NADH:ubiquinone oxidoreductase (complex I). While FeS cluster N1 can be studied individually at a temperature of 30 K, this is not possible for FeS cluster N2 due to its severe spectral overlap with cluster N1. In this case Relaxation Filtered Hyperfine (REFINE) spectroscopy can be used to separate the overlapping spectra based on differences in their relaxation behavior.Collaborative Research Centre 472 (Project P2)Collaborative Research Centre 472 (Project P15)Goethe University in Frankfurt/Main. Center for Biomolecular Magnetic Resonanc

    Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica

    Get PDF
    AbstractMitochondrial proton-translocating NADH-dehydrogenase (complex I) is one of the largest and most complicated membrane bound protein complexes. Despite its central role in eukaryotic oxidative phosphorylation and its involvement in a broad range of human disorders, little is known about its structure and function. Therefore, we have started to use the powerful genetic tools available for the strictly aerobic yeast Yarrowia lipolytica to study this respiratory chain enzyme. To establish Y. lipolytica as a model system for complex I, we purified and characterized the multisubunit enzyme from Y. lipolytica and sequenced the nuclear genes coding for the seven central subunits of its peripheral part. Complex I from Y. lipolytica is quite stable and could be isolated in a highly pure and monodisperse state. One binuclear and four tetranuclear iron–sulfur clusters, including N5, which was previously known only from mammalian mitochondria, were detected by EPR spectroscopy. Initial structural analysis by single particle electron microscopy in negative stain and ice shows complex I from Y. lipolytica as an L-shaped particle that does not exhibit a thin stalk between the peripheral and the membrane parts that has been observed in other systems

    Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I

    Get PDF
    Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (beta 1-beta 2(S2) loop), ND1 (TMH5-6(ND1) loop) and ND3 (TMH1-2(ND3) loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2(ND3) loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89A(LYRM6) of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism. Respiratory complex I plays a key role in energy metabolism. Cryo-EM structure of a mutant accessory subunit LYRM6 from the yeast Yarrowia lipolytica and molecular dynamics simulations reveal conformational changes at the interface between LYRM6 and subunit ND3, propagated further into the complex. These findings offer insight into the mechanism of proton pumping by respiratory complex I.Peer reviewe

    Biological in-vivo measurement of dose distribution in patients' lymphocytes by gamma-H2AX immunofluorescence staining: 3D conformal- vs. step-and-shoot IMRT of the prostate gland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different radiation-techniques in treating local staged prostate cancer differ in their dose- distribution. Physical phantom measurements indicate that for 3D, less healthy tissue is exposed to a relatively higher dose compared to SSIMRT. The purpose is to substantiate a dose distribution in lymphocytes <it>in-vivo </it>and to discuss the possibility of comparing it to the physical model of total body dose distribution.</p> <p>Methods</p> <p>For each technique (3D and SSIMRT), blood was taken from 20 patients before and 10 min after their first fraction of radiotherapy. The isolated leukocytes were fixed 2 hours after radiation. DNA double-strand breaks (DSB) in lymphocytes' nuclei were stained immunocytochemically using the gamma-H2AX protein. Gamma-H2AX foci inside each nucleus were counted in 300 irradiated as well as 50 non-irradiated lymphocytes per patient. In addition, lymphocytes of 5 volunteer subjects were irradiated externally at different doses and processed under same conditions as the patients' lymphocytes in order to generate a calibration-line. This calibration-line assigns dose-value to mean number of gamma-H2AX foci/ nucleus. So the dose distributions in patients' lymphocytes were determined regarding to the gamma-H2AX foci distribution. With this information a cumulative dose-lymphocyte-histogram (DLH) was generated. Visualized distribution of gamma-H2AX foci, correspondingly dose per nucleus, was compared to the technical dose-volume-histogram (DVH), related to the whole body-volume.</p> <p>Results</p> <p>Measured <it>in-vivo </it>(DLH) and according to the physical treatment-planning (DVH), more lymphocytes resulted with low-dose exposure (< 20% of the applied dose) and significantly fewer lymphocytes with middle-dose exposure (30%-60%) during Step-and-Shoot-IMRT, compared to conventional 3D conformal radiotherapy. The high-dose exposure (> 80%) was equal in both radiation techniques. The mean number of gamma-H2AX foci per lymphocyte was 0.49 (3D) and 0.47 (SSIMRT) without significant difference.</p> <p>Conclusions</p> <p><it>In-vivo </it>measurement of the dose distribution within patients' lymphocytes can be performed by detecting gamma-H2AX foci. In case of 3D and SSIMRT, the results of this method correlate with the physical calculated total body dose-distribution, but cannot be interpreted unrestrictedly due to the blood circulation. One possible application of the present method could be in radiation-protection for <it>in-vivo </it>dose estimation after accidental exposure to radiation.</p

    Molecular Basis for Atovaquone Binding to the Cytochrome bc 1 Complex

    Get PDF
    Atovaquone is a substituted 2-hydroxynaphthoquinone that is used therapeutically to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting the cytochrome bc1 complex. We have examined the interaction of atovaquone with the bc1 complex isolated from Saccharomyces cerevisiae, a surrogate, nonpathogenic fungus. Atovaquone inhibits the bc1 complex competitively with apparent Ki = 9 nm, raises the midpoint potential of the Rieske iron-sulfur protein from 285 to 385 mV, and shifts the g values in the EPR spectrum of the Rieske center. These results indicate that atovaquone binds to the ubiquinol oxidation pocket of the bc1 complex, where it interacts with the Rieske iron-sulfur protein. A computed energy-minimized structure for atovaquone liganded to the yeast bc1 complex suggests that a phenylalanine at position 275 of cytochrome b in the bovine bc1 complex, as opposed to leucine at the equivalent position in the yeast enzyme, is responsible for the decreased sensitivity of the bovine bc1 complex (Ki = 80 nm) to atovaquone. When a L275F mutation was introduced into the yeast cytochrome b, the sensitivity of the yeast enzyme to atovaquone decreased (Ki = 100 nm) with no loss in activity, confirming that the L275F exchange contributes to the differential sensitivity of these two species to atovaquone. These results provide the first molecular description of how atovaquone binds to the bc1 complex and explain the differential inhibition of the fungal versus mammalian enzymes

    Bioluminescence analysis and numerical evaluation of atp-synthesis by native and reconstituted membranes containing bacterial atp-synthase

    No full text
    The biological energy conservation resulting in ATP synthesis was observed by the luciferase bioluminescence test. The analysis was done as kinetic test with single samples taken in miute intervals. The non-linearity of the luciferase raw data was corrected with a computer program and a calibration curve estimated with each batch of analytical reagent containing luciferase and luciferin. The bioanalytical test was applied woth reconstituted liposomes containing ATP-synthase and monomeric bacteriorhodopsin, and with native bacterial plasma membrane vesicles (PMV) from Micrococcus luteus, which were energized by a NADH-O2 reaction

    Ph-jumps of aqueous-solutions by flash light photolysis of caged acids

    No full text
    Photolabile esters which producee a large pH-jump in siltio were sythetized. The compounds were biocompatible and no inhibitors of membrane proteins as ATP-synthase. The pH-jump in solution was as large as >1 in less than a microsecond, as required for driving energy conservation of liposomes with reconstituted ATP-synthase. The action spectrum of the caged acids, esters of 4,5-dinitrophenyl-ethalol-1, extended from 280 to 370 nm
    corecore