357 research outputs found

    1011-116 Myocardial Rb Extraction Fraction: Determination in Humans

    Get PDF
    Ouantitation of myocardial blood flow (MBF) with diffusion-limited radiotracers as 82Rb and positron emission tomography (PET) requires knowledge of flow dependence of myocardial 82Rb extraction fraction. To determine this dependence we evaluated 7 patients (mean age (61.0±9.7) years, 4 males, 3 females) who had undergone coronary angiography with exclusion of relevant coronary stenoses and normal left ventricular function. 82Rb-PET clearance was simultaneously assessed with global MBF by the argon (Ar) inert gas method. 82Rb clearance was dynamically measured by a CTI-Siemens ECAT 931-08-12 scanner after i.v. injection of 1–1.2 GBq 82Rb. Ar gas desaturation was obtained by simultaneous arterial and coronary sinus blood sampling. Measurements were performed at rest and during vasodilatation induced by i.v. dipyridamole (0.7mg/kg/4min). Mean 82Rb clearance and Ar flow values were (0.39±0,03)ml/g/min and (0.69±0.14)ml/g/min at rest, respectively, and (0.47±0.09)ml/g/min and (1.48±0.49)ml/g/min during hyperemia. A fit with a two compartment model yielded E=PS/(PS+MBF) with PS=(0.82±0.09)ml/g/min (PS: permeability surface area product). These data (figure) provide for the best of our knowledge the first measured 82Rb extraction fraction in humans and may form the basis for more accurate quantitation of myocardial blood flow with 82Rb-PET

    High-resolution 27Al MAS NMR spectroscopic studies of the response of spinel aluminates to mechanical action

    Get PDF
    The response of the local structure of various types of spinel aluminates, ZnAl2O4 (normal spinel), MgAl2O4 (partly inverse spinel), and Li0.5Al2.5O4 (fully inverse spinel), to mechanical action through high-energy milling is investigated by means of 27Al MAS NMR. Due to the ability of this nuclear spectroscopic technique to probe the local environment of Al nuclei, valuable quantitative insight into the mechanically induced changes in the spinel structure, such as the local cation disorder and the deformation of the polyhedron geometry, is obtained. It is revealed that, independent of the ionic configuration in the initial oxides, the mechanical action tends to randomize cations over the two non-equivalent cation sublattices provided by the spinel structure. The response of the spinels to mechanical treatment is found to be accompanied by the formation of a non-uniform core-shell nanostructure consisting of an ordered crystallite surrounded by a structurally disordered interface/surface shell region. Based on the comparative NMR studies of the non-treated and mechanically treated spinels, an attempt is made to separate the surface effects from the bulk effects in spinel nanoparticles. The non-equilibrium cation distribution and the deformed polyhedra are found to be confined to the near-surface layers of spinel nanoparticles with the thickness extending up to about 0.7 nm. The cation inversion parameter of the mechanically treated spinel is compared with that of the non-treated material at non-ambient conditions. © 2011 The Royal Society of Chemistry

    Nonequilibrium structure of Zn 2SnO 4 spinel nanoparticles

    Get PDF
    Zinc stannate (Zn 2SnO 4) nanoparticles with an average size of about 26 nm are synthesized via single-step mechanochemical processing of binary oxide precursors (ZnO and SnO 2) at ambient temperature, without the need for the subsequent calcination, thus making the synthesis route very simple and cost-effective. The mechanically induced phase evolution of the 2ZnO + SnO 2 mixture is followed by XRD and by a variety of spectroscopic techniques including 119Sn MAS NMR, Raman spectroscopy, 119Sn Mössbauer spectroscopy, and XPS. High-resolution TEM studies reveal a non-uniform structure of mechanosynthesized Zn 2SnO 4 nanoparticles consisting of a crystalline core surrounded by a structurally disordered surface shell. Due to the ability of the applied solid-state spectroscopies to probe the local environment of Sn cations, valuable complementary insight into the nature of the local structural disorder of mechanosynthesized Zn 2SnO 4 is obtained. The findings hint at a highly nonequilibrium state of the as-prepared stannate characterized by its partly inverse spinel structure and the presence of deformed polyhedra in the surface shell of nanoparticles. © 2012 The Royal Society of Chemistry

    Maximum rates of N2 fixation and primary production are out of phase in a developing cyanobacterial bloom in the Baltic Sea

    Get PDF
    Although N2-fixing cyanobacteria contribute significantly to oceanic sequestration of atmospheric CO2, little is known about how N2 fixation and carbon fixation (primary production) interact in natural populations of marine cyanobacteria. In a developing cyanobacterial bloom in the Baltic Sea, rates of N2 fixation (acetylene reduction) showed both diurnal and longer-term fluctuations. The latter reflected fluctuations in the nitrogen status of the cyanobacterial population and could be correlated with variations in the ratio of acetylene reduced to 15N2 assimilated. The value of this ratio may provide useful information about the release of newly fixed nitrogen by a cyanobacterial population. However, although the diurnal fluctuations in N2 fixation broadly paralleled diurnal fluctuations in carbon fixation, the longer-term fluctuations in these two processes were out of phase

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA

    Get PDF
    Background: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl− cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. Methods: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. Results: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. Conclusion: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies

    Response to letter regarding article, "percutaneous left-ventricular support with the impella-2.5-assist device in acute cardiogenic shock results of the impella-EUROSHOCKRegistry"

    Get PDF
    Comment on Letter by Maini regarding article, "percutaneous left-ventricular support with the impella-2.5-assist device in acute cardiogenic shock: results of the impella-EUROSHOCK-registry". [Circ Heart Fail. 2013] Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. [Circ Heart Fail. 2013

    Host Genetic Background Strongly Influences the Response to Influenza A Virus Infections

    Get PDF
    The genetic make-up of the host has a major influence on its response to combat pathogens. For influenza A virus, several single gene mutations have been described which contribute to survival, the immune response and clearance of the pathogen by the host organism. Here, we have studied the influence of the genetic background to influenza A H1N1 (PR8) and H7N7 (SC35M) viruses. The seven inbred laboratory strains of mice analyzed exhibited different weight loss kinetics and survival rates after infection with PR8. Two strains in particular, DBA/2J and A/J, showed very high susceptibility to viral infections compared to all other strains. The LD50 to the influenza virus PR8 in DBA/2J mice was more than 1000-fold lower than in C57BL/6J mice. High susceptibility in DBA/2J mice was also observed after infection with influenza strain SC35M. In addition, infected DBA/2J mice showed a higher viral load in their lungs, elevated expression of cytokines and chemokines, and a more severe and extended lung pathology compared to infected C57BL/6J mice. These findings indicate a major contribution of the genetic background of the host to influenza A virus infections. The overall response in highly susceptible DBA/2J mice resembled the pathology described for infections with the highly virulent influenza H1N1-1918 and newly emerged H5N1 viruses
    corecore