13 research outputs found

    Comparison of Pharmacological Modulation of APP Metabolism in Primary Chicken Telencephalic Neurons and in a Human Neuroglioma Cell Line

    Get PDF
    Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases and the formation of Aβ peptides are pivotal for Alzheimer's disease. Therefore, a large number of drugs has been developed targeting APP metabolism. However, many pharmacological compounds have been identified in vitro in immortalized APP overexpressing cell lines rather than in primary neurons. Here, we compared the effect of already characterized secretase inhibitors and modulators on Aβ formation in primary chicken telencephalic neurons and in a human neuroglioma cell line (H4) ectopically expressing human APP with the Swedish double mutation. Primary chicken neurons replicated the effects of a β-secretase inhibitor (β-secretase inhibitor IV), two γ-secretase inhibitors (DAPM, DAPT), two non-steroidal-anti-inflammatory drugs (sulindac sulfide, CW), and of the calpain inhibitor calpeptin. With the exception of the two γ-secretase inhibitors, all tested compounds were more efficacious in primary chicken telencephalic neurons than in the immortalized H4 cell line. Moreover, H4 cells failed to reproduce the effect of calpeptin. Hence, primary chicken telencephalic neurons represent a suitable cell culture model for testing drugs interfering with APP processing and are overall more sensitive to pharmacological interference than immortalized H4 cells ectopically expressing mutant human APP

    Hydrogen-powered lawn mower

    No full text
    We present a hydrogen-powered lawn mower which was adapted from a commercial model running on gasoline. The necessary modifications include adjustments to the carburettor and the installation of a hydrogen reservoir containing about 5 kg of a metal hydride powder. Hydrogen is obtained by desorption of that powder at ambient temperature and 2–20 bar pressure. The reservoir is rechargable at a hydrogen pressure of about 25 bar within less than 1 h. One charge lasts about 40 min. corresponding to about 800 m2 of cut lawn. The engine shows a reduced noise level and no tendency to backfiring. The prototype has run successfully for more than 1 year

    Thirty-Eight C-Terminal Amino Acids of the Coupling Protein TraD of the F-Like Conjugative Resistance Plasmid R1 Are Required and Sufficient To Confer Binding to the Substrate Selector Protein TraM

    No full text
    Coupling proteins (CPs) are present in type IV secretion systems of plant, animal, and human pathogens and are essential for DNA transfer in bacterial conjugation systems. CPs connect the DNA-processing machinery to the mating pair-forming transfer apparatus. In this report we present in vitro and in vivo data that demonstrate specific binding of CP TraD of the IncFII R1 plasmid transfer system to relaxosomal protein TraM. With overlay assays and enzyme-linked immunosorbent assays we showed that a truncated version of TraD, termed TraD11 (ΔN155), interacted strongly with TraM. The apparent TraD11-TraM association constant was determined to be 2.6 × 10(7) liters/mol. Electrophoretic mobility shift assays showed that this variant of TraD also strongly bound to TraM when it was in complex with its target DNA. When 38 amino acids were additionally removed from the C terminus of TraD, no binding to TraM was observed. TraD15, comprising the 38 amino-acid-long C terminus of TraD, bound to TraM, indicating that the main TraM interaction domain resides in these 38 amino acids of TraD. TraD15 exerted a dominant negative effect on DNA transfer but not on phage infection by pilus-specific phage R17, indicating that TraM-TraD interaction is important for conjugative DNA transfer but not for phage infection. We also observed that TraD encoded by the closely related F factor bound to TraM encoded by the R1 plasmid. Our results thus provide evidence that substrate selection within the IncF plasmid group is based on TraM's capability to select the correct DNA molecule for transport and not on substrate selection by the CP

    Surface Characterisation And Bonding Of Y-tzp Following Non-thermal Plasma Treatment.

    No full text
    (1) To chemically characterise Y-TZP surface via X-ray photoelectron spectroscopy (XPS) and evaluate the surface energy levels (SE) after non-thermal plasma (NTP). (2) To test the microtensile bond strength (MTBS) of Y-TZP bonded to cured composite disks, after a combination of different surface conditioning methods. Twenty-four Y-TZP discs (13.5mm×4mm) were obtained from the manufacturer and composite resin (Z-100) discs with similar dimensions were prepared. All discs were polished to 600 grit and divided into 8 groups (n=3 disks each), four control (non-NTP treated) and four experimental (NTP treated for 10s) groups. All groups received one of the four following treatments prior to cementation with Rely×Unicem cement: sand-blasting (SB), a Clearfil ceramic primer (MDP), sand-blasting+MDP (SBMDP), or baseline (B), no treatment. SE readings and surface roughness parameters were statistically analysed (ANOVA, Tukey's, p<0.05). Mixed model and paired samples t-tests were used to compare groups on MTBS. XPS showed increase in O and decrease in C elements after NTP. The polar component increased for BP (42.20mN/m) and SBP (43.77mN/m). MTBS values for groups BP (21.3MPa), SBP (31MPa), MDPP (30.1MPa) and SBMDPP (32.3MPa) were significantly higher in specimens treated with NTP than their untreated counterparts B (9.1MPa), SB (14.4MPa), MDP (17.8MPa) and SBMDP (24.1MPa). (1) Increase of O and decrease of C led to higher surface energy levels dictated by the polar component after NTP; (2) NTP application increased MTBS values of Y-TZP surfaces.4151-

    An overlook on the current registries for rare and complex connective tissue diseases and the future scenario of TogethERN ReCONNET

    No full text
    Background: Patient registries play a crucial role in supporting clinical practice, healthcare planning and medical research, offering a real-world picture on rare and complex connective tissue diseases (rCTDs). ERN ReCONNET launched the first European Registry Infrastructure with the aim to plan, upgrade and link registries for rCTDs, with the final goal to promote a harmonized data collection approach all over Europe for rCTDs. Methods: An online survey addressed to healthcare professionals and patients' representatives active in the field of rCTDs was integrated by an extensive database search in order to build a mapping of existing registries for rCTDs. Findings: A total of 140 registries were found, 38 of which include multiple diseases. No disease-specific registry was identified for relapsing polychondritis, mixed connective tissue disease and undifferentiated connective tissue disease. Discussion: This overview on the existing registries for rCTDs provides a useful starting point to identify the gaps and the strengths of registries on the coverage of rCTDs, and to develop a common data set and data collection approach for the establishment of the TogethERN ReCONNET Infrastructure
    corecore