19 research outputs found
Genetic characterization of primary mediastinal B-cell lymphoma: pathogenesis and patient outcomes
PURPOSE: Primary mediastinal large B-cell lymphoma (PMBCL) is a rare aggressive lymphoma predominantly affecting young female patients. Large-scale genomic investigations and genetic markers for risk stratification are lacking. PATIENTS AND METHODS: To elucidate the full spectrum of genomic alterations, samples from 340 patients with previously untreated PMBCL were investigated by whole-genome (n = 20), whole-exome (n = 78), and targeted (n = 308) sequencing. Statistically significant prognostic variables were identified using a multivariable Cox regression model and confirmed by L1/L2 regularized regressions. RESULTS: Whole-genome sequencing revealed a commonly disrupted p53 pathway with nonredundant somatic structural variations (SVs) in TP53-related genes (TP63, TP73, and WWOX) and identified novel SVs facilitating immune evasion (DOCK8 and CD83). Integration of mutation and copy-number data expanded the repertoire of known PMBCL alterations (eg, ARID1A, P2RY8, and PLXNC1) with a previously unrecognized role for epigenetic/chromatin modifiers. Multivariable analysis identified six genetic lesions with significant prognostic impact. CD58 mutations (31%) showed the strongest association with worse PFS (hazard ratio [HR], 2.52 [95% CI, 1.50 to 4.21]; P < .001) and overall survival (HR, 2.33 [95% CI, 1.14 to 4.76]; P = .02). IPI high-risk patients with mutated CD58 demonstrated a particularly poor prognosis, with 5-year PFS and OS rates of 41% and 58%, respectively. The adverse prognostic significance of the CD58 mutation status was predominantly observed in patients treated with nonintensified regimens, indicating that dose intensification may, to some extent, mitigate the impact of this high-risk marker. By contrast, DUSP2-mutated patients (24%) displayed durable responses (PFS: HR, 0.2 [95% CI, 0.07 to 0.55]; P = .002) and prolonged OS (HR, 0.11 [95% CI, 0.01 to 0.78]; P = .028). Upon CHOP-like treatment, these patients had very favorable outcome, with 5-year PFS and OS rates of 93% and 98%, respectively. CONCLUSION: This large-scale genomic characterization of PMBCL identified novel treatment targets and genetic lesions for refined risk stratification. DUSP2 and CD58 mutation analyses may guide treatment decisions between rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone and dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab
Genomic and microenvironmental landscape of stage I follicular lymphoma, compared with stage III/IV
Although the genomic and immune microenvironmental landscape of follicular lymphoma (FL) has been extensively investigated, little is known about the potential biological differences between stage I and stage III/IV disease. Using next-generation sequencing and immunohistochemistry, 82 FL nodal stage I cases were analyzed and compared with 139 FL stage III/IV nodal cases. Many similarities in mutations, chromosomal copy number aberrations, and microenvironmental cell populations were detected. However, there were also significant differences in microenvironmental and genomic features. CD8+ T cells (P = .02) and STAT6 mutations (false discovery rate [FDR] <0.001) were more frequent in stage I FL. In contrast, programmed cell death protein 1-positive T cells, CD68+/CD163+ macrophages (P < .001), BCL2 translocation (BCL2trl+) (P < .0001), and KMT2D (FDR = 0.003) and CREBBP (FDR = 0.04) mutations were found more frequently in stage III/IV FL. Using clustering, we identified 3 clusters within stage I, and 2 clusters within stage III/IV. The BLC2trl+ stage I cluster was comparable to the BCL2trl+ cluster in stage III/IV. The two BCL2trl- stage I clusters were unique for stage I. One was enriched for CREBBP (95%) and STAT6 (64%) mutations, without BLC6 translocation (BCL6trl), whereas the BCL2trl- stage III/IV cluster contained BCL6trl (64%) with fewer CREBBP (45%) and STAT6 (9%) mutations. The other BCL2trl- stage I cluster was relatively heterogeneous with more copy number aberrations and linker histone mutations. This exploratory study shows that stage I FL is genetically heterogeneous with different underlying oncogenic pathways. Stage I FL BCL2trl- is likely STAT6 driven, whereas BCL2trl- stage III/IV appears to be more BCL6trl driven