79 research outputs found

    Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils

    Get PDF
    Arctic soils play an important role in Earth's climate system, as they store large amounts of carbon that, if released, could strongly increase greenhouse gas levels in our atmosphere. Most research to date has focused on how the turnover of organic matter in these soils is regulated by abiotic factors, and few studies have considered the potential role of biotic regulation. However, arctic soils are currently missing important groups of soil organisms, and here, we highlight recent empirical evidence that soil organisms' presence or absence is key to understanding and predicting future climate feedbacks from arctic soils. We propose that the arrival of soil organisms into arctic soils may introduce "novel functions", resulting in increased rates of, for example, nitrification, methanogenesis, litter fragmentation, or bioturbation, and thereby alleviate functional limitations of the current community. This alleviation can greatly enhance decomposition rates, in parity with effects predicted due to increasing temperatures. We base this argument on a series of emerging experimental evidence suggesting that the dispersal of until-then absent micro-, meso-, and macroorganisms (i.e. from bacteria to earthworms) into new regions and newly thawed soil layers can drastically affect soil functioning. These new observations make us question the current view that neglects organism-driven "alleviation effects" when predicting future feedbacks between arctic ecosystems and our planet's climate. We therefore advocate for an updated framework in which soil biota and the functions by which they influence ecosystem processes become essential when predicting the fate of soil functions in warming arctic ecosystems

    Norway spruce postglacial recolonization of Fennoscandia

    Get PDF
    Contrasting theories exist regarding how Norway spruce recolonized Fennoscandia after the last glaciation. Here, the authors provide evidences from sedimentary ancient DNA and modern population genomics to support that Norway spruce was present in southern Fennoscandia shortly after deglaciation and the early Holocene migration from the east. Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 +/- 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.Peer reviewe

    Screening of benzodiazepines in thirty European rivers

    Get PDF
    Pharmaceuticals as environmental contaminants have received a lot of interest over the past decade but, for several pharmaceuticals, relatively little is known about their occurrence in European surface waters. Benzodiazepines, a class of pharmaceuticals with anxiolytic properties, have received interest due to their behavioral modifying effect on exposed biota. In this study, our results show the presence of one or more benzodiazepine(s) in 86% of the analyzed surface water samples (n = 138) from 30 rivers, representing seven larger European catchments. Of the 13 benzodiazepines included in the study, we detected 9, which together showed median and mean concentrations (of the results above limit of quantification) of 5.4 and 9.6 ng L−1, respectively. Four benzodiazepines (oxazepam, temazepam, clobazam, and bromazepam) were the most commonly detected. In particular, oxazepam had the highest frequency of detection (85%) and a maximum concentration of 61 ng L−1. Temazepam and clobazam were found in 26% (maximum concentration of 39 ng L−1) and 14% (maximum concentration of 11 ng L−1) of the samples analyzed, respectively. Finally, bromazepam was found only in Germany and in 16 out of total 138 samples (12%), with a maximum concentration of 320 ng L−1. This study clearly shows that benzodiazepines are common micro-contaminants of the largest European river systems at ng L−1 levels. Although these concentrations are more than a magnitude lower than those reported to have effective effects on exposed biota, environmental effects cannot be excluded considering the possibility of additive and sub-lethal effects

    The fate of airborne lead pollution in boreal forest soils

    No full text
    Lead has a more than three-millennia-long pollution history in Europe. Metal production, burning of coal and use of leaded petrol resulted in a significant pollution of the atmosphere. As a consequence of atmospheric fallout, the Swedish boreal forest is strongly contaminated by airborne lead pollution. High levels of lead in the soil and soil pore water are of concern because the soil fauna, plants and aquatic biota may respond negatively to this toxic element. The fate of the accumulated pool of pollution in the soil is not well known. In this thesis, I determine four variables of importance for increasing our knowledge about the past, present and future lead levels in the boreal forest soil: 1) the pre-pollution atmospheric deposition rate of lead; 2) the upward flux of lead from deeper soil layers to near-surface horizons as a result of plant uptake; 3) the mean residence time of lead in the mor layer (the organic horizon at the surface of forest soils); and 4) the vertical and lateral transport of pollution lead within the mineral soil and to streams. Lead concentration measurements and stable lead isotope analyses were used for distinguishing pollution lead from natural lead in cores from ombrotrophic bogs, forest soil profiles, forest mosses, soil-water and stream-water samples. The results clearly stress that the boreal forest ecosystem is totally dominated by pollution lead. This is proved by low 206Pb/207Pb ratios (mainly between 1.14 and 1.20) in the mor layer, forest plants and stream water, while the local geogenic lead of the mineral soil (C-horizon) has high ratios (> 1.30). The dominance of pollution in the mor layer is caused by high deposition rates of airborne lead pollution, minute transport rates of lead from the mineral soil by forest plants (about 0.02 mg lead m-2 year-1) and a long mean residence time of the deposited lead (~250 years for mature forest). In the pristine pre-pollution environment, lead was a rare element due to low atmospheric deposition rates (0.001 to 0.01 mg m-2 year-1). It is estimated that the present lead inventory in the mor layer is up to 100 times higher than in the pristine environment where ≀ 8 mg m-2 was present in the mor. The levels in this biologically important horizon will decrease at a very slow rate and it will take centuries for the deeper part of the mor layer to fully respond to decreasing atmospheric inputs. In a hypothetic scenario with a ceased atmospheric lead deposition, the pool of pollution lead will ultimately be redistributed to deeper water-saturated soil layers from where a lateral transport to surface waters occurs. In the studied catchment, the export of pollution lead from the soil to the stream is estimated to peak slightly about one thousand years from now

    CARD-FISH analysis of prokaryotic community composition and abundance along small-scale vegetation gradients in a dry arctic tundra ecosystem

    Get PDF
    The size and composition of soil microbial communities have important influences on terrestrial ecosystem processes such as soil decomposition. However, compared with studies of aboveground plant communities, there are relatively few studies on belowground microbial communities and their interactions with aboveground vegetations in the arctic region. In this study, we conducted the first investigation of the abundance and composition of prokaryotic communities along small-scale vegetation gradients (ca. 1–3 m) in a dry arctic tundra ecosystem in Northern Sweden using fluorescent in situ hybridization (FISH) coupled with catalyzed reporter deposition (CARD). The number of prokaryotic cells increased with increasing vegetation cover along vegetation gradients, mainly as a function of increased amounts of soil carbon and moisture. Eubacteria and Archaea constituted approximately 59.7% and 33.4% of DAPI-positive cells, respectively. Among the analyzed bacterial phyla and sub-phyla, Acidobacteria and α-proteobacteria were the most dominant groups, constituting approximately 13.5% and 10.7% of DAPI-positive cells, respectively. Interestingly, the soil prokaryotic community composition was relatively unaffected by the dramatic changes in the aboveground vegetation community. Multivariate analyses suggested that the prokaryotic community composition depended on soil pH rather than on aboveground vegetation. Surface plants are weak predictors of the composition of the soil microbial community in the studied soil system and the size of the community is constrained by carbon and water availability. In addition, our study demonstrated that CARD-FISH, which is still a rarely-used technique in soil ecology, is effective for quantifying soil microbes

    The legacy of ecological imperialism in the Scandes : earthworms and their implications for Arctic research

    No full text
    In the nineteenth century, numerous settlements were established in the alpine region of Fennoscandia (the Scandes), an area that later became a major international scene for Arctic research. Here we raise awareness of this era and show that earthworm-driven bioturbation in “pristine” soils around contemporary Arctic research infrastructure is caused by soil fauna left behind during early land use. We use soil preserved under an alpine settlement to highlight that soils were not bioturbated when the first house was built at a site where bioturbation is now widespread. A review of archived material with unique site-specific chronology constrained the onset of bioturbation to the post-1871 era. Our results suggest that small-scale land use introduced earthworms that now thrive far beyond the realms of former cultivated fields. The legacy of soil fauna from this example of “ecological imperialism” still lingers and should be considered when studying soils of the Scandes

    Exposure via biotransformation: Oxazepam reaches predicted pharmacological effect levels in European perch after exposure to temazepam

    Get PDF
    It is generally expected that biotransformation and excretion of pharmaceuticals occurs similarly in fish and mammals, despite significant physiological differences. Here, we exposed European perch (Perca fluviatilis) to the benzodiazepine drug temazepam at a nominal concentration of 2 ”g L−1 for 10 days. We collected samples of blood plasma, muscle, and brain in a time-dependent manner to assess its bioconcentration, biotransformation, and elimination over another 10 days of depuration in clean water. We observed rapid pharmacokinetics of temazepam during both the exposure and depuration periods. The steady state was reached within 24 h of exposure in most individuals, as was complete elimination of temazepam from tissues during depuration. Further, the biologically active metabolite oxazepam was produced via fish biotransformation, and accumulated significantly throughout the exposure period. In contrast to human patients, where a negligible amount of oxazepam is created by temazepam biotransformation, we observed a continuous increase of oxazepam concentrations in all fish tissues throughout exposure. Indeed, oxazepam accumulated more than its parent compound, did not reach a steady state during the exposure period, and was not completely eliminated even after 10 days of depuration, highlighting the importance of considering environmental hazards posed by pharmaceutical metabolites
    • 

    corecore