694 research outputs found
Non perturbative Adler-Bardeen Theorem
The Adler-Bardeen theorem has been proved only as a statement valid at all
orders in perturbation theory, without any control on the convergence of the
series. In this paper we prove a nonperturbative version of the Adler-Bardeen
theorem in by using recently developed technical tools in the theory of
Grassmann integration.Comment: 28 pages, 14 figure
Acclimation to Elevated CO2 Increases Constitutive Glucosinolate Levels of Brassica Plants and Affects the Performance of Specialized Herbivores from Contrasting Feeding Guilds
Plants growing under elevated CO2 concentration may acclimate by modifying chemical traits. Most studies have focused on the effects of environmental change on plant growth and productivity. Potential effects on chemical traits involved in resistance, and the consequences of such effects on plant-insect interactions, have been largely neglected. Here, we evaluated the performance of two Brassica specialist herbivores from contrasting feeding guilds, the leaf-feeding Pieris brassicae and the phloem-feeding Brevicoryne brassicae, in response to potential CO2-mediated changes in primary and major secondary metabolites (glucosinolates) in Brassica oleracea. Plants were exposed to either ambient (400ppm) or elevated (800ppm) CO2 concentrations for 2, 6, or 10weeks. Elevated CO2 did not affect primary metabolites, but significantly increased glucosinolate content. The performance of both herbivores was significantly reduced under elevated CO2 suggesting that CO2-mediated increases in constitutive defense chemistry could benefit plants. However, plants with up-regulated defenses could also be subjected to intensified herbivory by some specialized herbivores, due to a chemically-mediated phagostimulatory effect, as documented here for P. brassicae larvae. Our results highlight the importance of understanding acclimation and responses of plants to the predicted increases in atmospheric CO2 concentrations and the concomitant effects of these responses on the chemically-mediated interactions between plants and specialized herbivore
Relativistic strong-field ionization of hydrogen-like atomic systems in constant crossed electromagnetic fields
Relativistic strong-field ionization of hydrogen-like atoms or ions in a
constant crossed electromagnetic field is studied. The transition amplitude is
formulated within the strong-field approximation in G\"oppert-Mayer gauge, with
initial and final electron states being described by the corresponding
Dirac-Coulomb and Dirac-Volkov wave functions, respectively. Coulomb
corrections to the electron motion during tunneling are taken into account by
adjusting an established method to the present situation. Total and
energy-differential ionization rates are calculated and compared with
predictions from other theories in a wide range of atomic numbers and applied
field strengths.Comment: 9 pages, 4 figure
Relativistic ionization-rescattering with tailored laser pulses
The interaction of relativistically strong tailored laser pulses with an
atomic system is considered. Due to a special tailoring of the laser pulse, the
suppression of the relativistic drift of the ionized electron and a dramatic
enhancement of the rescattering probability is shown to be achievable. The high
harmonic generation rate in the relativistic regime is calculated and shown to
be increased by several orders of magnitude compared to the case of
conventional laser pulses. The energies of the revisiting electron at the
atomic core can approach the MeV domain, thus rendering hard x-ray harmonics
and nuclear reactions with single atoms feasible
Quantum Electrodynamics in Two-Dimensions at Finite Temperature. Thermofield Bosonization Approach
The Schwinger model at finite temperature is analyzed using the Thermofield
Dynamics formalism. The operator solution due to Lowenstein and Swieca is
generalized to the case of finite temperature within the thermofield
bosonization approach. The general properties of the statistical-mechanical
ensemble averages of observables in the Hilbert subspace of gauge invariant
thermal states are discussed. The bare charge and chirality of the Fermi
thermofields are screened, giving rise to an infinite number of mutually
orthogonal thermal ground states. One consequence of the bare charge and
chirality selection rule at finite temperature is that there are innumerably
many thermal vacuum states with the same total charge and chirality of the
doubled system. The fermion charge and chirality selection rules at finite
temperature turn out to imply the existence of a family of thermal theta vacua
states parametrized with the same number of parameters as in zero temperature
case. We compute the thermal theta-vacuum expectation value of the mass
operator and show that the analytic expression of the chiral condensate for any
temperature is easily obtained within this approach, as well as, the
corresponding high-temperature behavior
Exact Asymptotic Behaviour of Fermion Correlation Functions in the Massive Thirring Model
We obtain an exact asymptotic expression for the two-point fermion
correlation functions in the massive Thirring model (MTM) and show that, for
, they reproduce the exactly known corresponding functions of the
massless theory, explicitly confirming the irrelevance of the mass term at this
point. This result is obtained by using the Coulomb gas representation of the
fermionic MTM correlators in the bipolar coordinate system.Comment: To appear in J. Phys. A: Math. Gen. 12 page
On renormalizability of the massless Thirring model
We discuss the renormalizability of the massless Thirring model in terms of
the causal fermion Green functions and correlation functions of left-right
fermion densities. We obtain the most general expressions for the causal
two-point Green function and correlation function of left-right fermion
densities with dynamical dimensions of fermion fields, parameterised by two
parameters. The region of variation of these parameters is constrained by the
positive definiteness of the norms of the wave functions of the states related
to components of the fermion vector current. We show that the dynamical
dimensions of fermion fields calculated for causal Green functions and
correlation functions of left-right fermion densities can be made equal. This
implies the renormalizability of the massless Thirring model in the sense that
the ultra-violet cut-off dependence, appearing in the causal fermion Green
functions and correlation functions of left-right fermion densities, can be
removed by renormalization of the wave function of the massless Thirring
fermion fields only.Comment: 17 pages, Latex, the contribution of fermions with opposite chirality
is added,the parameterisation of fermion determinant by two parameters is
confirmed,it is shown that dynamical dimensions of fermion fields calculated
from different correlation functions can be made equal.This allows to remove
the dependence on the ultra-violet cut-off by the renormalization of the wave
function of Thirring fermion fields onl
Smooth Bosonization as a Quantum Canonical Transformation
We consider a 1+1 dimensional field theory which contains both a complex
fermion field and a real scalar field. We then construct a unitary operator
that, by a similarity transformation, gives a continuum of equivalent theories
which smoothly interpolate between the massive Thirring model and the
sine-Gordon model. This provides an implementation of smooth bosonization
proposed by Damgaard et al. as well as an example of a quantum canonical
transformation for a quantum field theory.Comment: 20 pages, revte
Equivalent bosonic theory for the massive Thirring model with non-local interaction
We study, through path-integral methods, an extension of the massive Thirring
model in which the interaction between currents is non-local. By examining the
mass-expansion of the partition function we show that this non-local massive
Thirring model is equivalent to a certain non-local extension of the
sine-Gordon theory. Thus, we establish a non-local generalization of the famous
Coleman's equivalence. We also discuss some possible applications of this
result in the context of one-dimensional strongly correlated systems and
finite-size Quantum Field Theories.Comment: 15 pages, latex, no figure
- …