The interaction of relativistically strong tailored laser pulses with an
atomic system is considered. Due to a special tailoring of the laser pulse, the
suppression of the relativistic drift of the ionized electron and a dramatic
enhancement of the rescattering probability is shown to be achievable. The high
harmonic generation rate in the relativistic regime is calculated and shown to
be increased by several orders of magnitude compared to the case of
conventional laser pulses. The energies of the revisiting electron at the
atomic core can approach the MeV domain, thus rendering hard x-ray harmonics
and nuclear reactions with single atoms feasible