178 research outputs found

    Color superconducting quark matter in compact stars

    Full text link
    Recent indications for high neutron star masses (M \sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.Comment: 8 pages, 3 figures, To appear in the proceedings of EXOCT 2007: International Symposium on Exotic States of Nuclear Matter, Catania, Italy, 11-15 Jun 200

    Phase diagram of neutron star quark matter in nonlocal chiral models

    Get PDF
    We analyze the phase diagram of two-flavor quark matter under neutron star constraints for a nonlocal covariant quark model within the mean field approximation. Applications to cold compact stars are discussed.Comment: 3 pages, 1 figure, proceedings of the IV International Conference on Quarks and Nuclear Physics (QNP06), Madrid, Spain, June 5-10, 2006. To appear in Eur. Phys. J.

    Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies

    Get PDF
    Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma

    Symmetry energy of dilute warm nuclear matter

    Get PDF
    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular by the appearance of bound states. A recently developed quantum statistical (QS) approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.Comment: 4 pages, 2 figures, 1 tabl

    Unique coding for authentication and anti-counterfeiting by controlled and random process variation in L-PBF and L-DED

    Get PDF
    Additive manufacturing technologies enable various possibilities to create and modify the material composition and structure on a local level, but are often prone to undesired defects and inhomogeneities. This contribution makes use of such flaws to generate material-inherent, hidden codes and watermarks in metals for authentication and anti-counterfeiting applications. By controlled and random process variation, unique codes that can be read and authenticated by an eddy current device were produced with the processes of laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED). Two approaches are presented: First, volumetric, porous structures with a defined shape are manufactured with L-PBF. Second, coatings are fabricated by L-DED with alternating process parameters, leading to local deviations of the magnetic permeability. This non-deterministic coding approach generates a distinctive material structure that triggers high signal amplitudes in the eddy current measurement. Counterfeiting becomes impossible due to the irreproducible melt pool dynamics. Statistical hypothesis testing proves that the system is able to prevent false acceptance or rejection of a code with a certainty of 500 million to one. A low-cost setup for a novel locking system demonstrates that a code can be sensed reliably within one second

    Diquark Condensates and Compact Star Cooling

    Full text link
    The effect of color superconductivity on the cooling of quark stars and neutron stars with large quark cores is investigated. Various known and new quark-neutrino processes are studied. As a result, stars being in the color flavor locked (CFL) color superconducting phase cool down extremely fast. Quark stars with no crust cool down too rapidly in disagreement with X-ray data. The cooling of stars being in the N_f =2 color superconducting (2SC) phase with a crust is compatible with existing X-ray data. Also the cooling history of stars with hypothetic pion condensate nuclei and a crust does not contradict the data.Comment: 10 pages, 5 figures, accepted for publication in Ap

    Phase diagrams in nonlocal PNJL models constrained by Lattice QCD results

    Full text link
    Based on lattice QCD-adjusted SU(2) nonlocal Polyakov--Nambu--Jona-Lasinio (PNJL) models, we investigate how the location of the critical endpoint in the QCD phase diagram depends on the strenght of the vector meson coupling, as well as the Polyakov-loop (PL) potential and the form factors of the covariant model. The latter are constrained by lattice QCD data for the quark propagator. The strength of the vector coupling is adjusted such as to reproduce the slope of the pseudocritical temperature for the chiral phase transition at low chemical potential extracted recently from lattice QCD simulations. Our study supports the existence of a critical endpoint in the QCD phase diagram albeit the constraint for the vector coupling shifts its location to lower temperatures and higher baryochemical potentials than in the case without it.Comment: 23 pages, 10 figures. Version accepted in Phys. Part. Nucl. Lett. (to appear), references adde
    corecore