1,520 research outputs found

    Capturing correlations in chaotic diffusion by approximation methods

    Full text link
    We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line which contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, whilst the third method approximates Markov partitions and transition matrices by using the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in case of dynamics where exact results for the diffusion coefficient are not available.Comment: 11 pages, 5 figure

    Deterministic diffusion in flower shape billiards

    Full text link
    We propose a flower shape billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles of flower shape, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form by different schemes all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance to reproduce the precise parameter dependence of the diffusion coefficent.Comment: 8 pages (revtex) with 9 figures (encapsulated postscript

    Understanding deterministic diffusion by correlated random walks

    Full text link
    Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line and the periodic Lorentz gas. Starting from suitable Green-Kubo formulas we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coeficients in terms of dynamical correlations.Comment: 13 pages (revtex) with 5 figures (postscript

    Fractal dimension of transport coefficients in a deterministic dynamical system

    Full text link
    In many low-dimensional dynamical systems transport coefficients are very irregular, perhaps even fractal functions of control parameters. To analyse this phenomenon we study a dynamical system defined by a piece-wise linear map and investigate the dependence of transport coefficients on the slope of the map. We present analytical arguments, supported by numerical calculations, showing that both the Minkowski-Bouligand and Hausdorff fractal dimension of the graphs of these functions is 1 with a logarithmic correction, and find that the exponent Îł\gamma controlling this correction is bounded from above by 1 or 2, depending on some detailed properties of the system. Using numerical techniques we show local self-similarity of the graphs. The local self-similarity scaling transformations turn out to depend (irregularly) on the values of the system control parameters.Comment: 17 pages, 6 figures; ver.2: 18 pages, 7 figures (added section 5.2, corrected typos, etc.

    Understanding Anomalous Transport in Intermittent Maps: From Continuous Time Random Walks to Fractals

    Full text link
    We show that the generalized diffusion coefficient of a subdiffusive intermittent map is a fractal function of control parameters. A modified continuous time random walk theory yields its coarse functional form and correctly describes a dynamical phase transition from normal to anomalous diffusion marked by strong suppression of diffusion. Similarly, the probability density of moving particles is governed by a time-fractional diffusion equation on coarse scales while exhibiting a specific fine structure. Approximations beyond stochastic theory are derived from a generalized Taylor-Green-Kubo formula.Comment: 4 pages, 3 eps figure

    Investigations on nucleophilic layers made with a novel plasma jet technique

    Get PDF
    In this work a novel plasma jet technique is used for the deposition of nucleophilic films based on (3-aminopropyl)trimethoxysilane at atmospheric pressure. Film deposition was varied with regard to duty cycles and working distance. Spectral ellipsometry and chemical derivatization with 4-(trifluoromethyl)benzaldehyde using ATR- FTIR spectroscopy measurements were used to characterize the films. It was found that the layer thickness and the film composition are mainly influenced by the duty cycle

    Random walk approach to the d-dimensional disordered Lorentz gas

    Full text link
    A correlated random walk approach to diffusion is applied to the disordered nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic expression for the diffusion constant in arbitrary number of dimensions d is obtained. The result corresponds to an Enskog-like correction to the Boltzmann prediction, being exact in the dilute limit, and better or nearly exact in comparison to renormalized kinetic theory predictions for all allowed densities in d=2,3. Extensive numerical simulations were also performed to elucidate the role of the approximations involved.Comment: 5 pages, 5 figure

    Persistence effects in deterministic diffusion

    Full text link
    In systems which exhibit deterministic diffusion, the gross parameter dependence of the diffusion coefficient can often be understood in terms of random walk models. Provided the decay of correlations is fast enough, one can ignore memory effects and approximate the diffusion coefficient according to dimensional arguments. By successively including the effects of one and two steps of memory on this approximation, we examine the effects of ``persistence'' on the diffusion coefficients of extended two-dimensional billiard tables and show how to properly account for these effects, using walks in which a particle undergoes jumps in different directions with probabilities that depend on where they came from.Comment: 7 pages, 7 figure

    Is subdiffusional transport slower than normal?

    Full text link
    We consider anomalous non-Markovian transport of Brownian particles in viscoelastic fluid-like media with very large but finite macroscopic viscosity under the influence of a constant force field F. The viscoelastic properties of the medium are characterized by a power-law viscoelastic memory kernel which ultra slow decays in time on the time scale \tau of strong viscoelastic correlations. The subdiffusive transport regime emerges transiently for t<\tau. However, the transport becomes asymptotically normal for t>>\tau. It is shown that even though transiently the mean displacement and the variance both scale sublinearly, i.e. anomalously slow, in time, ~ F t^\alpha, ~ t^\alpha, 0<\alpha<1, the mean displacement at each instant of time is nevertheless always larger than one obtained for normal transport in a purely viscous medium with the same macroscopic viscosity obtained in the Markovian approximation. This can have profound implications for the subdiffusive transport in biological cells as the notion of "ultra-slowness" can be misleading in the context of anomalous diffusion-limited transport and reaction processes occurring on nano- and mesoscales
    • …
    corecore