In systems which exhibit deterministic diffusion, the gross parameter
dependence of the diffusion coefficient can often be understood in terms of
random walk models. Provided the decay of correlations is fast enough, one can
ignore memory effects and approximate the diffusion coefficient according to
dimensional arguments. By successively including the effects of one and two
steps of memory on this approximation, we examine the effects of
``persistence'' on the diffusion coefficients of extended two-dimensional
billiard tables and show how to properly account for these effects, using walks
in which a particle undergoes jumps in different directions with probabilities
that depend on where they came from.Comment: 7 pages, 7 figure