15 research outputs found

    Transparent semiconducting oxides for active multi-electrode arrays

    Get PDF
    Die vorliegende Arbeit befasst sich mit der Anwendbarkeit von transparenter Elektronik basierend auf oxidischen Halbleitern in Multielektrodenarrays zur Messung von neuronalen Signalen. Im ersten experimentellen Kapitel werden auf Zinkoxid basierende Bauelemente untersucht. Verschiedene Varianten von Feldeffekttransistoren (FETs) werden charakterisiert und ihre Eignung zur Detektion von Zellsignalen überprüft. Die Anwendbarkeit physikalischer Modelle zur Beschreibung von ZnO-basierten Metal-Halbleiter-FETs (MESFETs) wird behandelt. Weiterhin wird die Eignung von einfachen Inverterschaltungen zur Spannungsverstärkung diskutiert. Das zweite Kapitel thematisiert Rauschmessungen an unterschiedlichen ZnO-basierten Proben, darunter Dünnfilme, Mikronadeln, MESFETs und Inverter. Darauf aufbauend wird die Auswirkung des gemessenen Stromrauschens auf die Sensitivität der Bauelemente nachvollzogen und theoretisch modelliert. Im dritten Kapitel wird das Verhalten der Bauelemente im Kontakt mit Elektolyt beschrieben. Die Signalübertragung von Spannungsänderungen im Elektrolyt auf die Chipelektronik wird mit verschiedenen Messmethoden charakterisiert. Dabei kommt teilweise ein selbstgebauter Vorverstärker zum Einsatz, dessen Aufbau ebenfalls beschrieben wird. Die Stabilität der verwendeten Materialien in physiologischen Salzlösungen und ihre Biokompatibilität wird überprüft. Darüber hinaus werden FETs mit Elektrolytgate und Zinkzinnoxid-Kanal vorgestellt.:1. Introduction 2. Measurement Setup and Sample Fabrication 2.1. Device Fabrication 2.2. Measurement Methods 2.3. Current Amplifier with Offset Compensation 3. Oxide Semiconductor Based Devices 3.1. Theoretical Description 3.2. Thin Films 3.4. Simple Inverter 3.5. Test Circuit for Active Matrix Configurations 4. Noise 4.1. Noise Sources 4.2. Contributions from Measurement Setup 4.3. Homogenous ZnO Samples 4.4. ZnO Based Devices 5. Experiments in Electrolyte and with Cells 5.1. Cell-Transistor Coupling 5.2. Materials in Electrolytical and Biological Environment 5.3. Electrode Arrays with Field-Effect Transistors 5.4. Electrode Arrays with Simple Inverters 5.5. Electrode Arrays with Solution Gated Transistors 6. Conclusion and Outlook Appendices Bibliography Symbols and Abbreviations List of Own and Contributed Articles Acknowledgement

    Low frequency noise of ZnO based metal-semiconductor field-effect transistors

    Get PDF
    The low frequency noise of metal-semiconductor field-effect transistors (MESFETs) based on ZnO:Mg thin films grown by pulsed laser deposition on a-plane sapphire was investigated. In order to distinguish between noise generation in the bulk channel material, at the semiconductor surface, and at the gate/channel interface, ohmic ZnO channels without gate were investigated in detail, especially concerning the dependency of the noise on geometrical variations. The experiments suggest that the dominating 1/f noise in the frequency range below 1 kHz is generated within the bulk channel material, both for bare ZnO channels and MESFETs

    Transparent semiconducting oxides for active multi-electrode arrays

    No full text
    Die vorliegende Arbeit befasst sich mit der Anwendbarkeit von transparenter Elektronik basierend auf oxidischen Halbleitern in Multielektrodenarrays zur Messung von neuronalen Signalen. Im ersten experimentellen Kapitel werden auf Zinkoxid basierende Bauelemente untersucht. Verschiedene Varianten von Feldeffekttransistoren (FETs) werden charakterisiert und ihre Eignung zur Detektion von Zellsignalen überprüft. Die Anwendbarkeit physikalischer Modelle zur Beschreibung von ZnO-basierten Metal-Halbleiter-FETs (MESFETs) wird behandelt. Weiterhin wird die Eignung von einfachen Inverterschaltungen zur Spannungsverstärkung diskutiert. Das zweite Kapitel thematisiert Rauschmessungen an unterschiedlichen ZnO-basierten Proben, darunter Dünnfilme, Mikronadeln, MESFETs und Inverter. Darauf aufbauend wird die Auswirkung des gemessenen Stromrauschens auf die Sensitivität der Bauelemente nachvollzogen und theoretisch modelliert. Im dritten Kapitel wird das Verhalten der Bauelemente im Kontakt mit Elektolyt beschrieben. Die Signalübertragung von Spannungsänderungen im Elektrolyt auf die Chipelektronik wird mit verschiedenen Messmethoden charakterisiert. Dabei kommt teilweise ein selbstgebauter Vorverstärker zum Einsatz, dessen Aufbau ebenfalls beschrieben wird. Die Stabilität der verwendeten Materialien in physiologischen Salzlösungen und ihre Biokompatibilität wird überprüft. Darüber hinaus werden FETs mit Elektrolytgate und Zinkzinnoxid-Kanal vorgestellt.:1. Introduction 2. Measurement Setup and Sample Fabrication 2.1. Device Fabrication 2.2. Measurement Methods 2.3. Current Amplifier with Offset Compensation 3. Oxide Semiconductor Based Devices 3.1. Theoretical Description 3.2. Thin Films 3.4. Simple Inverter 3.5. Test Circuit for Active Matrix Configurations 4. Noise 4.1. Noise Sources 4.2. Contributions from Measurement Setup 4.3. Homogenous ZnO Samples 4.4. ZnO Based Devices 5. Experiments in Electrolyte and with Cells 5.1. Cell-Transistor Coupling 5.2. Materials in Electrolytical and Biological Environment 5.3. Electrode Arrays with Field-Effect Transistors 5.4. Electrode Arrays with Simple Inverters 5.5. Electrode Arrays with Solution Gated Transistors 6. Conclusion and Outlook Appendices Bibliography Symbols and Abbreviations List of Own and Contributed Articles Acknowledgement

    Transparent semiconducting oxides for active multi-electrode arrays

    Get PDF
    Die vorliegende Arbeit befasst sich mit der Anwendbarkeit von transparenter Elektronik basierend auf oxidischen Halbleitern in Multielektrodenarrays zur Messung von neuronalen Signalen. Im ersten experimentellen Kapitel werden auf Zinkoxid basierende Bauelemente untersucht. Verschiedene Varianten von Feldeffekttransistoren (FETs) werden charakterisiert und ihre Eignung zur Detektion von Zellsignalen überprüft. Die Anwendbarkeit physikalischer Modelle zur Beschreibung von ZnO-basierten Metal-Halbleiter-FETs (MESFETs) wird behandelt. Weiterhin wird die Eignung von einfachen Inverterschaltungen zur Spannungsverstärkung diskutiert. Das zweite Kapitel thematisiert Rauschmessungen an unterschiedlichen ZnO-basierten Proben, darunter Dünnfilme, Mikronadeln, MESFETs und Inverter. Darauf aufbauend wird die Auswirkung des gemessenen Stromrauschens auf die Sensitivität der Bauelemente nachvollzogen und theoretisch modelliert. Im dritten Kapitel wird das Verhalten der Bauelemente im Kontakt mit Elektolyt beschrieben. Die Signalübertragung von Spannungsänderungen im Elektrolyt auf die Chipelektronik wird mit verschiedenen Messmethoden charakterisiert. Dabei kommt teilweise ein selbstgebauter Vorverstärker zum Einsatz, dessen Aufbau ebenfalls beschrieben wird. Die Stabilität der verwendeten Materialien in physiologischen Salzlösungen und ihre Biokompatibilität wird überprüft. Darüber hinaus werden FETs mit Elektrolytgate und Zinkzinnoxid-Kanal vorgestellt.:1. Introduction 2. Measurement Setup and Sample Fabrication 2.1. Device Fabrication 2.2. Measurement Methods 2.3. Current Amplifier with Offset Compensation 3. Oxide Semiconductor Based Devices 3.1. Theoretical Description 3.2. Thin Films 3.4. Simple Inverter 3.5. Test Circuit for Active Matrix Configurations 4. Noise 4.1. Noise Sources 4.2. Contributions from Measurement Setup 4.3. Homogenous ZnO Samples 4.4. ZnO Based Devices 5. Experiments in Electrolyte and with Cells 5.1. Cell-Transistor Coupling 5.2. Materials in Electrolytical and Biological Environment 5.3. Electrode Arrays with Field-Effect Transistors 5.4. Electrode Arrays with Simple Inverters 5.5. Electrode Arrays with Solution Gated Transistors 6. Conclusion and Outlook Appendices Bibliography Symbols and Abbreviations List of Own and Contributed Articles Acknowledgement

    Influence of Sacrificial Layer Germanium Content on Stacked-Nanowire FET Performance

    No full text
    The stacked nanowire field-effect transistor is an important option for future generations of CMOS technology. It features superior electrostatic control due to all-around gates while maintaining sufficient drive currents by stacking multiple channels. One of the challenges for manufacturing such devices is the fabrication of inner spacers between the nanowires in order to control the parasitic capacitances. A previously demonstrated approach for inner spacer fabrication uses the wet chemical etching of a sacrificial silicon-germanium layer between the silicon channels in order to prepare a cavity into which the spacer material is deposited. The etch rate of the sacrificial layer depends on the germanium content. Thus, the variations of the Si-Ge composition across the wafer lead to the corresponding geometrical variations of the transistor structures. This work traces the effect of Si-Ge composition variations via the inner spacer geometry on the key electrical properties of the devices using the numerical simulations. A significant impact on on-current and capacitances was determined. It could be shown that the dependence of the current on the Si-Ge composition is closely related to the doping profile in the nanowires. These results improve the understanding of sources of variability in nanowire transistors and, hence, may help to improve device reproducibility

    A Compact Model Based on Bardeens Transfer Hamiltonian Formalism for Silicon Single Electron Transistors

    No full text
    Presented is a physics-based compact model for a silicon-nanopillar single-electron transistor (SET). Tunneling currents are calculated using a master equation approach with rates obtained via the transfer Hamiltonian formalism. The quantum confinement of electrons on the quantum dot is taken into consideration by a suitable approximation as required for a nanometer-sized device. Device geometry and material properties enter the model directly as model parameters. Thus, this model enables the investigation of circuits and application scenarios for specific SET technologies in dependence on geometry and material variations. The model was implemented in HSPICE and used to simulate an inverter and a ring oscillator to evaluate the performance of the model. Specific device characteristics for a SET with a semiconducting quantum dot like the gate voltage threshold for the onset of current oscillations are reproduced. Therefore, simulations with the presented model will allow the testing of the SET circuits with more realistic assumptions concerning the device behavior compared to the much more abstract SET compact models available up to now

    Kompaktmodell für einen Einzelelektronentransistor in einer geschichteten Nanosäule - Implementierungen in HSPICE und EXCEL/VBA

    No full text
    Within the European Project IONS4SET a compact model for a single electron transistor (SET) was developed. The SET is formed by a silicon nanodot embedded in a silicon dioxide layer between two highly doped silicon electrodes. Here, the implementation of the compact model in HSPICE is provided for circuit simulation. In addition, a VBA implementation into Excel is provided which can be used to calculate circuit characterisitcs and stability diagrams.The provided implementation of the SET compact model was developed for HSPICE O-2018.09 from Synopsys, Inc. The VBA 7.1 implementation was developed for Excel2016 from Microsoft Corporation. For both, full examples with results are provided

    3D simulation of silicon-based single-electron transistors

    No full text
    Single electron transistors based on silicon nanopillars were investigated with regard to their current voltage characteristics. The simulations make use of the commercial quantum simulator nextnano++, but extend its functionality for the calculation of tunneling currents. A comparison with results obtained by the Monte-Carlo based tunneling simulator SIMON is presented. Investigations include the variation of geometrical quantities and quantum dot doping

    Low frequency noise of ZnO based metal-semiconductor field-effect transistors

    Get PDF
    The low frequency noise of metal-semiconductor field-effect transistors (MESFETs) based on ZnO:Mg thin films grown by pulsed laser deposition on a-plane sapphire was investigated. In order to distinguish between noise generation in the bulk channel material, at the semiconductor surface, and at the gate/channel interface, ohmic ZnO channels without gate were investigated in detail, especially concerning the dependency of the noise on geometrical variations. The experiments suggest that the dominating 1/f noise in the frequency range below 1 kHz is generated within the bulk channel material, both for bare ZnO channels and MESFETs

    Low frequency noise of ZnO based metal-semiconductor field-effect transistors

    No full text
    The low frequency noise of metal-semiconductor field-effect transistors (MESFETs) based on ZnO:Mg thin films grown by pulsed laser deposition on a-plane sapphire was investigated. In order to distinguish between noise generation in the bulk channel material, at the semiconductor surface, and at the gate/channel interface, ohmic ZnO channels without gate were investigated in detail, especially concerning the dependency of the noise on geometrical variations. The experiments suggest that the dominating 1/f noise in the frequency range below 1 kHz is generated within the bulk channel material, both for bare ZnO channels and MESFETs
    corecore