352 research outputs found

    Tuning the thermal conductance of molecular junctions with interference effects

    Full text link
    We present an \emph{ab initio} study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions based on several benzene and oligo-phenylene-ethynylene derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be controlled by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and more generally in nanostructured metal-organic hybrid systems, which are important to determine, how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators

    Thermal conductance of metallic atomic-size contacts: Phonon transport and Wiedemann-Franz law

    Full text link
    Motivated by recent experiments [Science 355, 6330 (2017); Nat. Nanotechnol. 12, 430 (2017)], we present here an extensive theoretical analysis of the thermal conductance of atomic-size contacts made of three different metals, namely gold (Au), platinum (Pt) and aluminum (Al)

    Transmission eigenchannels for coherent phonon transport

    Get PDF
    We present a procedure to determine transmission eigenchannels for coherent phonon transport in nanoscale devices using the framework of nonequilibrium Green's functions. We illustrate our procedure by analyzing a one-dimensional chain, where all steps can be carried out analytically. More importantly, we show how the procedure can be combined with ab initio calculations to provide a better understanding of phonon heat transport in realistic atomic-scale junctions. In particular, we study the phonon eigenchannels in a gold metallic atomic-size contact and different single-molecule junctions based on molecules such as an alkane chain, C60_{60}, and a brominated benzene-diamine, where in this latter case destructive phonon interference effects take place

    The cosmic radio dipole: Bayesian estimators on new and old radio surveys

    Full text link
    The cosmic radio dipole is an anisotropy in the number counts of radio sources, analogous to the dipole seen in the cosmic microwave background (CMB). Measurements of source counts of large radio surveys have shown that though the radio dipole is generally consistent in direction with the CMB dipole, the amplitudes are in tension. These observations present an intriguing puzzle as to the cause of this discrepancy, with a true anisotropy breaking with the assumptions of the cosmological principle, invalidating the most common cosmological models that are built on these assumptions. We present a novel set of Bayesian estimators to determine the cosmic radio dipole and compare the results with commonly used methods on the Rapid ASKAP Continuum Survey (RACS) and the NRAO VLA Sky Survey (NVSS) radio surveys. In addition, we adapt the Bayesian estimators to take into account systematic effects known to affect such large radio surveys, folding information such as the local noise floor or array configuration directly into the parameter estimation. The enhancement of these estimators allows us to greatly increase the amount of sources used in the parameter estimation, yielding tighter constraints on the cosmic radio dipole estimation than previously achieved with NVSS and RACS. We extend the estimators further to work on multiple catalogues simultaneously, leading to a combined parameter estimation using both NVSS and RACS. The result is a dipole estimate that perfectly aligns with the CMB dipole in terms of direction but with an amplitude that is three times as large, and a significance of 4.8σ\sigma. This new dipole measurement is made to an unprecedented level of precision for radio sources, which is only matched by recent results using infrared quasars.Comment: 14 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    Effects of Event-Free Noise Signals on Continuous-Time Simulation Performance

    Get PDF
    Generating stochastic input signals such as noise in physical systems is traditionally implemented using discrete random number generators based on discrete time-events. Within the Modelica community, random number generators free of time-events have recently been proposed in order to increase the performance of system simulations. However, the impact of such signals on commonly used solvers, such as DASSL or Radau IIA, is still under discussion. In order to provide better understanding for modeling practitioners, we examine the influence of event-free noise models on simulation performance. To this end, we conduct practical simulation experiments with systems of three sizes, two solvers, and different parameters. Results indicate that step-size control can handle event-free noise generators well and that they outperform sampled generators. The findings can be related to other time-dependent system inputs

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page
    corecore