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We present a procedure to determine transmission eigenchannels for coherent phonon transport in nanoscale
devices using the framework of nonequilibrium Green’s functions. We illustrate our procedure by analyzing
a one-dimensional chain, where all steps can be carried out analytically. More importantly, we show how the
procedure can be combined with ab initio calculations to provide a better understanding of phonon heat transport
in realistic atomic-scale junctions. In particular, we study the phonon eigenchannels in a gold metallic atomic-
size contact and different single-molecule junctions based on molecules such as an alkane chain, a brominated
benzene-diamine, where destructive phonon interference effects take place, and a C60 junction.
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I. INTRODUCTION

Recent advances in experimental techniques have enabled
to explore the heat conduction in a great variety of nanoscale
systems [1–4]. It has even become possible to measure the
heat conductance of metallic wires all the way down to single-
atom contacts [5,6], which constitute the ultimate limit of
miniaturization of electronic and phononic systems. Research
on heat conduction in nanoscale devices allows us to investigate
the phonon transport in new regimes, where the theoretical
description often requires fully atomistic approaches [7]. Here,
we are especially interested in the theoretical analysis of
phonon transport in atomic and molecular junctions, which
are prototypical nanosystems that are studied intensely in
the field of molecular electronics [8]. In these atomic-scale
systems, the inelastic mean-free path for phonons is often
much larger than the junction dimensions, and the phonon
transport is therefore fully coherent. In this situation, the
phonon transport is described within the framework of the
Landauer-Büttiker scattering theory in which the contribution
to the thermal conductance is determined by the elastic phonon
transmission function of the system [8,9]. Different strategies
have been put forward to compute this transmission function
based on, for instance, the scattering matrix approach [10–14],
mode-matching theory [15–17], or nonequilibrium Green’s
function (NEGF) techniques [18–27]. These approaches are
nicely summarized in Ref. [28].

In the context of electronic transport, it has been shown that
one can obtain a deep insight by resolving the total transmission
τ = ∑

μ τμ into contributions of eigenchannels, which are
particular scattering states with transmission coefficients 0 �
τμ � 1. The analysis of the eigenchannels in metallic atomic-
size contacts was crucial to elucidate the relation between
the chemical valence of the atoms and the charge transport
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characteristics [29–32]. Furthermore, it has been shown that
the electronic transmission coefficients of atomic contacts and
molecular junctions can be determined experimentally with
the help of superconductivity [31,33–35] or by measuring shot
noise [36–41].

All this suggests that it would be important to carry out
similar investigations in the case of coherent phonon transport.
A related analysis to those of transmission eigenchannels is that
of the mode-dependent transmission, which can be naturally
performed with mode-matching-based approaches [15–17]
or with the help of NEGF techniques [42,43]. However,
mode-dependent transmission studies do not actually provide
information on the eigenchannels in the central device part, and
they are restricted to bulk systems with translational symmetry.
For this reason, such a kind of analysis is not suitable for
atomic and molecular junctions that lack spatial symmetry.
Those atomic-scale systems are better described by means of
a combination of ab initio methods and NEGF techniques [9].
The problem with NEGF-based approaches is that they do
not provide immediate access to the scattering states on the
central part of the system, which makes the determination of
meaningful eigenchannels a challenging task. For this reason,
the calculations performed with NEGF techniques are often
interpreted with the help of the local density of states (LDOS)
[44–47] rather than in terms of eigenchannels. Such analyses
are certainly useful, but they do not provide a direct connection
to the key quantity for coherent phonon transport, namely,
the transmission function. Moreover, in those calculations the
information about the phase gets lost, which is important, for
instance, for the interpretation of interference effects. Instead,
the eigenchannels are clearly connected to the transmission,
they are also closely related to the local vibrational modes,
and they preserve the information about the phase. In the case
of electronic transport, Paulsson and Brandbyge [48] were able
to establish a method as to how the eigenchannels can be
obtained from information about the subspace of the central
part of the device only, i.e., from data that are readily available
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in NEGF-based approaches. The goal of this paper is to extend
those ideas to obtain the eigenchannels for coherent phonon
transport. In particular, we present here a general procedure
to extract these eigenchannels in NEGF-based calculations.
Moreover, we show that this formulation can be combined
with state-of-the-art ab initio methods, and we illustrate its
physical insight with the analysis of the phonon eigenchannels
in a variety of single-atom and single-molecule junctions of
special interest.

The rest of the paper is organized as follows. In Sec. II we
present our procedure to determine transmission eigenchannels
for coherent phonon transport in nanoscale systems. For this
purpose, we introduce in Sec. II A the main equations to
describe phonon transport, and we explain how they can be
solved formally in terms of scattering states using NEGFs.
In Sec. II B we discuss the spectral function, which plays a
key role in the determination of the eigenchannels, and we
show how it is connected to the scattering states of the system.
Finally, in Sec. II C we present the procedure to determine the
eigenchannels from a suitably chosen transmission probability
matrix using only information about the subspace of the central
part of the device. We illustrate this method in Sec. III through
a detailed discussion of examples ranging from a simple
toy model, consisting of a one-dimensional (1D) chain, to
various realistic systems such as a gold atomic contact and
single-molecule junctions based on an alkane chain, a benzene
derivative, and a C60 molecule. We close the paper in Sec. IV
with a brief summary of our main conclusions.

II. THEORETICAL PROCEDURE

In this section, we present the theoretical formalism to
determine transmission eigenchannels for phonons. In analogy
to electronic transport [48,49], we define the eigenchannel with
number μ as particular scattering state that can be computed as
the eigenfunction of a suitably chosen transmission probability
matrix, while τμ is the corresponding transmission eigenvalue.

A. Scattering states

We start our analysis of the coherent phonon transport
in a given nanoscale junction with the description of the
phononic system in the harmonic approximation. Within this
approximation, the phonons in an infinite spatial domain � are
described by the following Hamiltonian:

Ĥ =
∑

i∈�,α

p̂2
iα

2
+ 1

2h̄2

∑
i,j∈�,α,β

q̂iαKiα,jβ q̂jβ . (1)

Here, q̂iα = Q̂iα

√
mi is the mass-weighted displacement oper-

ator of atom i with mass mi , p̂iα = P̂iα/
√

mi is the correspond-
ing mass-scaled canonical momentum operator, and Kiα,jβ =
h̄2∂iα∂jβEBO/

√
mimj is the dynamical matrix, which is the

mass-weighted second derivative of the Born-Oppenheimer
energy. Displacements of atoms i,j are assumed to be along
the Cartesian axes α,β = x,y,z. The operators in Eq. (1) fulfill
the standard commutation relations [q̂iα,q̂jβ ] = [p̂iα,p̂jβ] = 0
and [q̂iα,p̂jβ] = ih̄δi,j δα,β .

In a typical transport setup, the domain � is divided into
three parts: a semi-infinite left (L) lead, a finite central (C) part,
and a semi-infinite right (R) lead. The Hamilton operator can
then be written as

Ĥ = ĤL + ĤC + ĤR, (2)

with

ĤX =
∑

i∈X,α

p̂2
iα

2
+ 1

2h̄2

∑
i∈X,j∈�,α,β

q̂iαKiα,jβ q̂jβ, (3)

where X = L,C,R. Since it is customary for phonon transport
to work in the Heisenberg picture, we shall consider the
Heisenberg operator

q̂iα(t) = eiĤ t/h̄q̂iαe−iĤ t/h̄. (4)

It is straightforward to show that this operator fulfills the
following equation of motion:

h̄2 d2q̂iα(t)

dt2
= −

∑
j∈�,β

Kiα,jβ q̂jβ (t). (5)

The full solution to this equation of motion is formed from
two sets of states [50]. One set includes propagating states
with a continuous energy spectrum. It is generated from the
electrodes, which we assume to be perfect semi-infinite crystals
without defects. The upper cutoff energy Ec of the spectrum is
determined by the Debye energy of the left or right electrode
material and is set to the maximum of the two values. The other
set is formed by bound states with a discrete energy spectrum,
originating from the finite central region. The bound states
are not important for coherent transport because they do not
contribute to the transmission. Nevertheless, we take them into
account in our considerations since they are crucial for the
normalization of the states, as we will discuss below.

The solution of Eq. (5) can then be expressed in terms of
the normal modes of the propagating and bound sets as

q̂iα(t) =
∫ Ec

0
dE

∑
m

h̄√
2E

(b†m(E)�∗
m,iα(E)eiEt/h̄ + H.c.)

+
∑
m

h̄√
2Em

(b̄†m�̄∗
m,iαeiEmt/h̄ + H.c.), (6)

where H.c. denotes Hermitian conjugation. The normal
mode operators fulfill standard commutation relations with
the only nonvanishing commutators being [bm(E),b†n(E′)] =
δmnδ(E − E′) and [b̄m,b̄

†
n] = δmn. In these expressions,

�m,iα(E) is the component of the normal mode vector �m(E)
on atom i for the displacement along α, which solves the
following eigenvalue problem:

K�m(E) = E2�m(E) (7)

for a given energy E. Here, m runs over all degenerate states
with energy E. Similar relations hold for the bound states,
where �̄m is the normal mode vector m, which solves

K�̄m = E2
m�̄m. (8)
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In this case, the index m enumerates all bound states. Overall,
the normal mode vectors are normalized such that∫ Ec

0
dE

∑
m

�∗
m,iα(E)�m,jβ(E)

+
∑
m

�̄
∗
m,iα�̄m,jβ = δij δαβ. (9)

Since we are interested in the formulation of transport as
a scattering problem, we solve Eq. (7) for the propagating
set of states by starting from the solutions of the uncoupled
subsystems X and treat the coupling between the different
parts, KXY with Y �= X, as a perturbation K1. For this reason
we write K = K0 + K1 with

K0 =
⎛
⎝KLL 0 0

0 KCC 0
0 0 KRR

⎞
⎠ (10)

and

K1 =
⎛
⎝ 0 KLC 0

KCL 0 KCR

0 KRC 0

⎞
⎠. (11)

Note that we assume here and henceforth that left and right
parts are decoupled, meaning that KLR = K

†
RL = 0. For the

eigenvalue E2, we arrive in this way at a general solution
�m(E) = (�m,L(E),�m,C(E),�m,R(E))T , which can be ex-
pressed by using the Green’s function formalism as follows:

�m,X(E) = ϕm,X(E) +
∑
Y �=X

d r
XX(E)KXY �m,Y (E). (12)

Here, ϕm,X(E) is the solution of the unperturbed system, i.e.,
(E2 − KXX)ϕm,X(E) = 0, and

d r
XX(E) = [(E + iη)2 − KXX]−1 (13)

is the retarded Green’s function of the unperturbed solution
with an infinitesimal parameter η > 0. The states in Eq. (12)
can also be written in terms of the retarded Green’s function
of the full system

Dr(E) = [(E + iη)2 − K]−1 (14)

as

�m,X(E) = ϕm,X(E) +
∑
Z

∑
Y �=Z

Dr
XZ(E)KZY ϕm,Y (E). (15)

From this equation, we define the scattering states �L
m(E)

[�R
m(E)] generated from unperturbed states that enter the junc-

tion region from the left (right) lead, which are special solutions
with the boundary conditions ϕm,C(E) = 0 and simultaneously
ϕm,R(E) = 0 [ϕm,L(E) = 0]. We will show in the next section
that, apart from contributions due to bound states, these left-
and right-incoming states give rise to the spectral function of
the central part.

B. Spectral function

The phonon spectral function plays a central role in the
determination of the transmission eigenchannels. This function

is given in terms of the phonon Green’s functions as follows:

A(E) = i{Dr(E) − [Dr(E)]†}. (16)

Making use of the propagating and bound sets of solutions to
Eqs. (7) and (8), the spectral function can be rewritten as

A(E) = −2
∫ Ec

0
dE′ ∑

m

Im

[
�m(E′)�†

m(E′)
(E + iη)2 − E′2

]

−2
∑
m

Im

[
�̄m�̄

†
m

(E + iη)2 − E2
m

]
. (17)

We note that this form of the spectral function is consistent
with the standard definition of the Green’s functions used for
the derivation of the Landauer formula [19]. Those Green’s
functions are defined in terms of the operators q̂iα(t) of Eq. (6),
and such a starting point also leads to Eq. (17). Now, using
that limη→0 Im[1/(E + iη)] = −πδ(E), we can express the
spectral function as follows:

A(E) = π

E

∑
m

�m(E)�†
m(E) +

∑
m

π

Em

δ(E − Em)�̄m�̄
†
m

= π

E
ρ(E), (18)

where

ρ(E) =
∑
m

�m(E)�†
m(E) +

∑
m

δ(E − Em)�̄m�̄
†
m (19)

is the phonon density matrix. This shows that the sets of states
�m(E) and �̄m, respectively, build up the density matrix at
a given energy. From this expression the density of states
of a given subset can be obtained by a projection on this
subset and an additional trace over the respective degrees of
freedom.

After these general considerations, we now address the
spectral function of our scattering problem. We obtain the
retarded Green’s function in the central region from Eq. (14),
and it is given by the Dyson equation

Dr
CC(E) = [

(E + iη)2 − KCC − �r
L(E) − �r

R(E)
]−1

, (20)

where �r
Z(E) = KCZd r

ZZ(E)KZC with Z = L,R is the em-
bedding self-energy due to the coupling to the leads. The
spectral function of the central part can then be expressed using
Eq. (16) as

AC(E) = iDr
CC(E)

{[
Dr

CC(E)†
]−1 − Dr

CC(E)−1
}
Dr

CC(E)†

=
∑

Z=L,R

Dr
CC(E)Z(E)Dr

CC(E)†

− 4iηEDr
CC(E)Dr

CC(E)† (21)

with Z(E) = i[�r
Z(E) − �r

Z(E)†] = KCZaZ(E)KZC and
aZ(E) = (π/E)

∑
m ϕm,Z(E)ϕ†

m,Z(E). While the last term
−4iηEDr

CC(E)Dr
CC(E)† in Eq. (21) corresponds to the

bound-state contributions, one can show that the two terms
Dr

CC(E)Z(E)Dr
CC(E)† for Z = L,R are related to the scat-

tering states �L
m(E) and �R

m(E). This can be demonstrated as
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follows:

AZ
C(E) = π

E

∑
m

PC�Z
m(E)�Z

m(E)†PC

= π

E

∑
m

PC
[
ϕZ

m(E) + Dr(E)K1ϕ
Z
m(E)

]
× [

ϕZ
m(E)† + ϕZ

m(E)†K†
1D

r(E)†
]
PC

= Dr
CC(E)Z(E)Dr

CC(E)†, (22)

where we have used Eq. (15) for the scattering states, ϕL
m(E) =

(ϕm,L(E),0,0)T , ϕR
m(E) = (0,0,ϕm,R(E))T and the projection

operator

PC =
∑
i∈C,α

eiαe†iα. (23)

In this expression, eiα is a unit vector of the same dimension
as the �m(E), and its entries are given by eiα,jβ = δij δαβ . We
have thus shown that the spectral function of the central part
AC(E) = AL

C(E) + AR
C(E) + AB

C(E) consists of two spectral
functions AL

C(E) and AR
C(E), which can be attributed to

scattering states �L
m(E) and �R

m(E) that enter the central device
region from the left and right leads, respectively, and a part
AB

C(E) due to bound states.

C. Transmission eigenchannels

We are now in the position to finally describe the procedure
to determine the transmission eigenchannels. Let us first recall
that we assume that the left and right parts are decoupled
[see Eqs. (10) and (11)]. Under these conditions and using the
NEGF formalism, one can show that the phononic heat current
is given by a Landauer-type formula that reads as [18,51–56]

J (T ) = 1

2πh̄

∫ ∞

0
dE Eτ (E)[nR(E,T ) − nL(E,T )], (24)

where

τ (E) = Tr
[
Dr

CC(E)L(E)Dr
CC(E)†R(E)

]
(25)

is the total phonon transmission and nZ(E,T ) =
1/{exp[E/(kBTZ)] − 1} is the Bose-Einstein distribution
function.

In order to obtain eigenchannels as linear combinations of
projections of scattering states onto the central junction part
simultaneously with the corresponding transmission eigen-
values, we express the transmission using Eq. (22) with
Z = L as

τ (E) = Tr
[
AL

C(E)R(E)
]

= π

E

∑
m

�L
m(E)†PCR(E)PC�L

m(E). (26)

Inspired by this expression, we define the transmission proba-
bility matrix

τ (1)
mn(E) = π

E
�L

m(E)†PCR(E)PC�L
n (E), (27)

which is actually the matrix that we shall diagonalize to obtain
the eigenchannels.

In order to diagonalize this transmission matrix, we follow
the procedure for the electronic problem, as described in

Refs. [48,49], and perform a spectral decomposition for the
central part of the spectral function

AL
C(E) =

∑
m

χ̃m(E)λm(E)χ̃ †
m(E)

= π

E

∑
m

ξ̃m(E)ξ̃
†
m(E). (28)

Here, ξ̃m(E) = √
Eλm(E)/π χ̃m(E) and χ̃ †

m(E)χ̃n(E) = δmn.
As can be seen from a comparison of Eqs. (22) and (28), the
vectors ξ̃m(E) = PC�L

m(E) originate from the scattering states
that arrive from the left lead via projections onto the central
part and are therefore normalized through the �L

m(E) [see also
Eq. (9)]. Then, we transform πR(E)/E into the new basis of
the ξ̃m(E) through

τ (1)
mn(E) = π

E
ξ̃
†
m(E)R(E)ξ̃n(E)

= π

E
[Ũ †(E)R(E)Ũ (E)]mn, (29)

where Ũ (E) = (ξ̃ 1(E), . . . ,ξ̃ 3NC
(E)) and NC is the number of

atoms in the central part. The eigenvectors are solutions of the
equation ∑

n

τ (1)
mn(E)cnμ(E) = τμ(E)cmμ(E) (30)

with
∑

m c∗
mμ(E)cmν(E) = δμν , and the eigenchannel μ in the

central region is given by

�̃μ(E) =
∑
m

cmμ(E)ξ̃m(E)

=
∑
i∈C,α

aiα,μ(E)eiα (31)

with aiα,μ(E) = ∑
m Ũiα,m(E)cmμ(E). The eigenchannels thus

arise from a unitary transformation of the states ξ̃m(E).
Let us note that the eigenchannels of Eq. (31) are right

eigenvectors of the transmission probability matrix τ (2)(E) =
AL

C(E)R(E) that appears in the trace of Eq. (26), i.e.,

τ (2)(E)�̃μ(E) = τμ(E)�̃μ(E). (32)

This is evident, if the relations in Eqs. (28)–(31) are used. It is
worth pointing out that apart from τ (1)(E) or τ (2)(E), one could
eventually consider other forms for the transmission proba-
bility matrix. For instance, we might want to use τ (3)(E) =
t(E)t†(E) with t(E) = 

1/2
R (E)Dr

CC(E)1/2
L (E). Given an

eigenchannel �̃μ(E) with eigenvalue τμ(E) of τ (2)(E) [see
Eq. (32)], we find that 

1/2
R (E)�̃μ(E) is an eigenvector

of τ (3)(E) with the same eigenvalue τμ(E). Similar to the
electronic case [49], we thus observe that the eigenvectors of
τ (3)(E) do no longer result from a unitary transformation of
scattering states that are projected onto the center via PC [see
Eq. (23)], as it was the case when using τ (2)(E) [see Eq. (31)].
Instead, the matrix 

1/2
R (E) destroys simultaneously the PC

projection property as well as the normalization [see Eq. (9)],
and a comparison of the amplitudes of eigenchannels of τ (3)(E)
would thus not be meaningful.

As it is obvious from the relation ξ̃m(E) = PC�L
m(E),

Eqs. (27)–(31) yield left-incoming eigenchannels originat-
ing from the scattering states �L

m(E). This means that the
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lattice vibrations arrive at the scattering region from the
left lead and are subsequently transmitted to the right lead
or scattered back to the left one. In order to obtain right-
incoming eigenchannels, it is sufficient to start from τ (4)

mn(E) =
π�R

m(E)†PCL(E)PC�R
n (E)/E in Eq. (27) or τ (5)(E) =

AR
C(E)L(E) in Eq. (32). The corresponding transmission

probability matrices are obtained by rearranging the expression
in the trace of Eq. (25) through cyclic permutation, by exploit-
ing the definition of AR

C(E) in Eq. (22), and by noting that it can
also be written in the form AR

C(E) = Dr
CC(E)†Z(E)Dr

CC(E)
through the relations given in Eqs. (16) and (21).

The eigenchannels in the complete system space �μ(E) =∑
m cmμ(E)�L

m(E) can be obtained from the �̃μ(E) in Eq. (31)
by omitting the projection PC on the central device part.
We will, however, focus in the following on device-projected
eigenchannels. The �̃μ(E) are normalized according to Eq. (9)
because they are constructed through a unitary transformation
with the cmμ from the ξ̃m(E). Consequently, they are measured
in units of J−1/2. There is also a global phase factor that needs
to be fixed for every eigenchannel �̃μ(E). In the examples
shown below, we will simply set the component of a certain
atom to a real value for the one-dimensional chain. In the ab
initio calculations, the numerical routines used for computing
the eigenvectors determine the phase factor, which may thus
vary both with E and μ.

We want to transform now the �̃m(E) to displacement
vectors measured in units of m, in analogy to what is done when
normal modes of finite systems are calculated classically from
the eigenvalue equation (8). For this reason, we divide �̃μ(E)
by

√
mi [see also the mass factor in Eq. (6)] and multiply in

addition with an energy-dependent scaling factor s(E) of unit
J1/2 m. In this way, the complex displacements of the central
part of the eigenchannels are obtained as

Q̃μ(E) =
∑
i∈C,α

s(E)√
mi

aiα,μ(E)eiα

=
∑
i∈C,α

s(E)√
mi

|aiα,μ(E)|eiθiα,μ(E)eiα. (33)

Equation (33) shows that each atomic displacement acquires
a phase factor due to the incident wave from the left lead. Note
that the displacements of the eigenchannels Q̃μ(E) in Eq. (33)
are proportional to the eigenchannels �̃μ(E) in Eq. (31), if all
of the mi are the same, as it is the case in monoatomic junctions.
In contrast, the proportionality is broken for heteroatomic
junctions. We have furthermore introduced a real-valued scal-
ing factor s(E) in Eq. (33), which we may adjust for an
optimized visualization of displacements at each energy E.
In this way, eigenchannel displacements Q̃μ(E) at different
energies should only be compared on qualitative grounds,
while they are fully comparable at a certain fixed energy.

The full solution for a wave moving from left to right at an
energy E is

Q̃μ(t,E) = Q̃μ(E)e−iEt/h̄. (34)

Obviously, Q̃μ(t = 0,E) = Q̃μ(E). The time dependence
of the real part of the eigenchannel displacement vector
Re Q̃μ(t,E) can be shown in a movie, and we refer the reader
to the Supplemental Material for examples [57], which will be

discussed in the next section. However, for illustrative purposes
we shall often restrict ourselves in the following to the repre-
sentation of the real part of the eigenchannel displacements at
time t = 0, i.e., Re Q̃μ(t = 0,E) = Re Q̃μ(E).

III. EXAMPLES

We apply now the procedure described in the previous
section to determine the phonon eigenchannels in different
situations. The examples range from a one-dimensional chain,
which can be solved analytically, to fully numerical cases
of atomic and molecular junctions in three dimensions. The
systems have been selected to show the versatility of the
method, which is applicable to any system exhibiting phase-
coherent phonon transport.

Let us also point out that in all cases studied below, we only
present the results for the left-incoming eigenchannels since
the junctions studied are rather symmetric. The right-incoming
eigenchannels show a similar behavior and can be obtained at
the same computational cost in an analogous procedure, as
explained above.

A. 1D chain

We now consider the case of a 1D atomic chain, where the
whole procedure for the determination of phonon transmission
eigenchannels can be carried out analytically. The system that
we are interested in is depicted in Fig. 1(a). In this model
junction the C part consists of two atoms, labeled −1 and 0 and
colored in black. These two atoms are coupled through a spring
with force constant kc. The leads are described by two semi-
infinite chains of coupled harmonic oscillators with nearest-
neighbor coupling constant kl. The left (right) lead is connected
to atom −1 (0) in the central region with a coupling constant
kl. Since the atomic movements are assumed to happen along
the direction of the chain, α reduces to a single component,
and the compound index iα simplifies to just the atom index i

in the following. Furthermore, we assume that all atoms in the
L, C, and R parts have the same mass mi = m.

The Green’s function of the central part Dr
CC(E) can be

obtained from Eq. (20) using

KCC =
(

kc + kl −kc

−kc kc + kl

)
(35)

together with the self-energies

�r
L(E) = f (E)

(
1 0
0 0

)
, �r

R(E) = f (E)

(
0 0
0 1

)
, (36)

where f (E) = (E2 − 2kl − E
√

E2 − 4kl)/2. Thus, the corre-
sponding linewidth-broadening matrices can be written as

L(E) = g(E)

(
1 0
0 0

)
, R(E) = g(E)

(
0 0
0 1

)
, (37)

with

g(E) =
{
E

√
4kl − E2 if E2 < 4kl,

0 if E2 � 4kl.
(38)

From these expressions, the spectral function AL
C(E) in

Eqs. (22) and (28) is computed. For E2 < 4kl, the eigenvalues
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FIG. 1. (a) Sketch of the 1D junction. Two semi-infinite leads with
nearest-neighbor coupling constants kl are connected at sites −1 and 0
with the coupling constant kc. The region (−∞, − 2] is considered as
the L part, the region [−1,0] as the C part, and [1,∞) as the R part. (b)
Transmission eigenchannel Q̃1(E,t = 0) for the 1D chain represented
in the complex plane for energies of E = 1, 10, and 19 meV. The red
arrow shows the complex number Q̃1,−1(E,t = 0) for the atom −1,
the blue one Q̃1,0(E,t = 0) for atom 0. (c) The same as in (b), but now
we display only the real part of the solution Re Q̃1(E,t = 0). (d) The
corresponding transmission eigenvalue τ1(E) as a function of energy
together with the LDOS of one of the atoms (−1 or 0) in the central
part. The energies of those eigenchannels, which are studied in (b)
and (c), are indicated with arrows. For (b)–(d), we assumed spring
constants of kl = 100 meV2 and kc = 20 meV2.

of this matrix are given by

λ1(E) =
√

4kl − E2
[
2k2

c + E2(kl − kc)
]

klE
[
4k2

c + E2(kl − 2kc)
] , λ2(E) = 0 (39)

with the corresponding eigenvectors

χ̃1(E) =
⎛
⎝−E2+2kc−iE

√
4kl−E2√

8k2
c +4E2(kl−kc)

kc√
2k2

c +E2(kl−kc)

⎞
⎠,

χ̃2(E) =

⎛
⎜⎝

kc(E2−2kc+iE
√

4kl−E2)

2
√

[k2
c +E2(kl−kc)][2k2

c +E2(kl−kc)]√
k2
c +E2(kl−kc)√

2k2
c +E2(kl−kc)

⎞
⎟⎠, (40)

which are orthonormal, i.e., χ̃ †
m(E)χ̃n(E) = δmn. From the

χ̃m(E) we obtain the C projections of left-incoming scatter-
ing states ξ̃m(E) by multiplying with

√
Eλm(E)/π [see the

discussion of Eq. (28)]. Constructing Ũ (E) = (ξ̃ 1(E),ξ̃ 2(E)),
we determine τ (1)(E) via Eq. (29). Diagonalizing the resulting
transmission probability matrix [see Eq. (30)], we obtain the

transmission eigenvalues

τ1(E) = k2
c (4kl − E2)

kl
[
4k2

c + E2(kl − 2kc)
] , τ2(E) = 0 (41)

and eigenvectors

c1(E) =
(

1
0

)
, c2(E) =

(
0
1

)
. (42)

These coefficients determine the eigenchannels �̃μ(E) via
Eq. (31). The time-dependent eigenchannel displacements can
now be computed through Eqs. (33) and (34) by transforming
the eigenchannels to the eigenchannel displacement vectors
and by multiplying with a time-dependent phase factor.

Since we assume that the masses of all atoms mi = m are
identical in the 1D chain, eigenchannels and eigenchannel
displacements are proportional Q̃μ(E) = s(E)�̃μ(E)/

√
m to

each other. We therefore define �̃μ(E,t) = √
m Q̃μ(t,E)/s(E)

and use both quantities interchangeably. Choosing the global
phase factor of the eigenchannel such that the component of
the atom 0 is real and positive at t = 0, the time-dependent
eigenchannels read as

�̃1(t,E) =
√√√√ √

4kl − E2k2
c

πkl
[
E2(kl − 2kc) + 4k2

c

]

×
(

−E2+2kc−iE
√

4kl−E2

2kc

1

)
e−iEt/h̄, �̃2(t,E) = 0.

(43)

Let us discuss several points at this stage. We note
that there is only a single eigenchannel with nonvanish-
ing transmission. This is due to the fact that in our 1D
model there is only nearest-neighbor coupling. Displace-
ments, which we assume to be along the chain direction,
thus need to spread sequentially from atom to atom. The
leads provide a cutoff energy of Ec = 2

√
kl, above which

no propagating states exist. If 0 � kc � kl the whole junction
shows no bound states, while they arise if kc > kl � 0. Due
to the particular left-right symmetry of our problem, the
following relations hold for kc � kl: ρii(E) = E[AL

ii(E) +
AR

ii(E)]/π = E Tr[AL
C(E)]/π = Eλ1(E)/π = |�̃1(E)|2 with

i = −1,0. The expressions imply that the square of the norm
of the transmission eigenchannel 1 follows the LDOS of one
of the atoms in the C part. Integration yields

∫ Ec

0 dEρii(E) =∫ Ec

0 dE|�̃1(E)|2 = 1, which is consistent with the normal-
ization condition in Eq. (9) since there are no bound states
present. For the case kc > kl, we get

∫ Ec

0 dE|�̃1(E)|2 < 1, and
bound-state contributions need to be taken into account in the
C part to fulfill the normalization condition in Eq. (9).

If we now consider the perfect chain with kc = kl, the
previous results reduce to

τ1(E) = 1, τ2(E) = 0 (44)

with

�̃1(t,E) = 1√
π

√
4kl − E2

(
u−1(t,E)
u0(t,E)

)
, �̃2(t,E) = 0, (45)
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where un(t,E) = exp[ik(E)nd − iEt/h̄]. The un(t,E) appear
as solutions for the equation of motion of atoms arranged in
an infinite chain and coupled by the same nearest-neighbor
spring constants [58]. Here, we have introduced the wave
vector k(E) = (2/d) sin−1(E/Ec) and neighboring atoms are
assumed to be separated by the distance d. Note that the
interatomic distance d is not relevant for our transport prob-
lem, which is entirely determined by the force constant
matrix K [see Eqs. (10) and (11)], where force constants
will of course be functions of interatomic distances in re-
alistic systems. As discussed in the previous paragraph,
we find that ρii(E) = |�̃1(E)|2 = 2/(π

√
4kl − E2) with∫ Ec

0 dE ρii(E) = 1.
We want to use now the analytical expressions to examine

different representations of the transmission eigenchannel
displacements. For this purpose we choose the global scaling
factor s/

√
m in Eq. (33) to be real, energy independent,

and of units J1/2 m/kg1/2. In Figs. 1(b)–1(d) we study the
transmission, LDOS, and eigenchannel displacements for the
1D chain with kl = 100 meV2 and kc = 20 meV2, i.e., in
the situation where there are only propagating states in the
junction system. Corresponding figures for the perfect chain
with kc = kl = 100 meV2 and with bound-states contributions
kl = 100 meV2 and kc = 2000 meV2 can be found in the
Supplemental Material [57]. The transmission τ (E) in Fig. 1(d)
shows a monotonically decreasing behavior with increasing
energy and vanishes above the cutoff energy of Ec = 20 meV.
At the same time, we plot the LDOS ρii(E) of the atom
i = −1,0 in the central part, which starts from a finite value
at E = 0, increases to a maximum around 9 meV and drops to
zero beyond Ec. The transmission eigenchannel displacements
Q̃1(t = 0,E) are shown in Fig. 1(b) for the energies E = 1, 10,
and 19 meV, indicated by arrows in Fig. 1(d). The two complex
components are indicated by two arrows in the complex plane.
Notice that while the norm of the eigenvector Q̃1(t,E) is
proportional to

√
ρii(E) for the energy-independent s chosen

here, the relative magnitude at the atom i = 0 as compared
to the atom i = −1, i.e., |Q̃1,0(t,E)|/|Q̃1,−1(t,E)|, decreases
with increasing energy because a larger portion of the left-
incoming wave gets reflected at the constriction. We also note
that the phase difference θ0,1(E) − θ−1,1(E) [see Eq. (33)]
between the two components increases from 0 at E = 0 to
π at E = 20 meV. With increasing time the arrows precess
around the origin at a constant angular velocity of ω = E/h̄,
spanning the circle indicated by the dashed lines in the plot.
Since the two atoms typically do not swing in phase, the real
parts of Q̃1,−1(t,E) and Q̃1,0(t,E) take maximum amplitudes
at different times.

In Fig. 1(c) we present another way to visualize the
eigenchannel displacements by simply plotting ReQ̃1,−1(t,E)
and ReQ̃1,0(t,E) at t = 0 as arrows attached to the respective
atoms. This is actually the representation that we will use
in all the figures shown in the rest of the paper. Notice
that due to our choice of the global phase factor, we get
θ0,1(E) = 0 and ReQ̃1,0(t = 0,E) is hence maximal at t = 0.
In contrast, ReQ̃1,−1(t,E) depends both on the absolute value
|Q̃1,−1(E)| and the phase θ−1,1(E), as it is visible from
Fig. 1(b). Despite the large |Q̃1,−1(E)| at E = 10 meV,
ReQ̃1,−1(t,E) is rather small because θ−1,1(E) ≈ −0.6π . In

spite of such shortcomings, one gets an impression of the
nature of the atomic motions involved in the eigenchannel.
Indeed, we observe that the eigenchannel displacements at low
energy E = 1 meV resemble a translational mode of the two
atoms, while they are basically vibrating against each other
at 19 meV, as it is clear from the evolution of the phase
difference θ0,1(E) − θ−1,1(E) with energy, discussed in the
previous paragraph. Videos could be used to examine the full
time-dependent dynamics of Re Q̃1(t,E), but we refrain from
this here since the simple 1D case is well characterized with
the help of Fig. 1(b).

B. Ab initio results

After illustrating the method with the simple 1D model,
we apply it now to realistic systems. In these systems, we
determine the force constant matrix for a particular junction
geometry with the help of density functional theory (DFT)
and describe the coherent phonon transport within the NEGF
formalism explained in Sec. II. In particular, we will present
different examples of the analysis of the phonon eigenchannels
in nanoscale systems that include a gold single-atom contact
[59] and several single-molecule junctions made of gold elec-
trodes that are bridged by an alkane chain [60], a benzene ring
with a bromine substituent [61], where destructive interference
effects show up, and a C60 molecule [62]. Let us stress
that we have already studied in detail the phononic thermal
conductance in these systems in the references cited above.
Here, we shall focus on the new insight provided by the
analysis of the eigenchannels, and we refer the reader to those
publications for the technical details on the calculations of the
transmission functions.

In our junctions with gold electrodes, the Debye energy of
the metal of around 20 meV represents the cutoff energy for
the propagating states of the scattering problem. Because gas-
phase molecules typically show vibrations with energies much
above Ec, this leads to bound states in the molecular junctions.
They need to be considered for a proper normalization of the
eigenchannels �̃μ(E) in Eq. (31).

We visualize eigenchannels in all the figures below in
terms of the static picture of the real part of the eigenchan-
nel displacements at t = 0, i.e., Re Q̃μ(t = 0,E) = Re Q̃μ(E)
[see Eqs. (33) and (34)], but we illustrate the real part of the full
time-dependent solutions Re Q̃μ(t,E) in the form of movies
online [57]. In contrast to the 1D model, the masses of the
atoms mi are different in the heteroatomic molecular junctions.
This leads to the fact that the eigenchannel displacements
Q̃μ(E) are no longer proportional to the eigenchannels �̃μ(E).
Below, we will adjust the real-valued scaling factor s(E)
of Eq. (33) for an optimized visualization of eigenchannel
displacements at each energy E. In this way, the vectors
Re Q̃μ(E) at different energies should only be compared on
qualitative grounds, while they are fully comparable at a certain
fixed energy. Since it should be obvious in which situation
we mean the genuine eigenchannels �̃μ(E) as compared to
the eigenchannel displacements Q̃μ(E), we do not clearly
distinguish them anymore and often simply refer to both as
“eigenchannels” in the following. For convenience, we will
henceforth furthermore omit all energy arguments.

155432-7



J. C. KLÖCKNER, J. C. CUEVAS, AND F. PAULY PHYSICAL REVIEW B 97, 155432 (2018)

FIG. 2. (a) Transmission eigenchannels for a gold dimer contact
at an energy of 1.5 meV. We show the three eigenchannels with the
highest transmissions, which are equal to τ1 = 0.943, τ2 = 0.238
and τ3 = 0.002. To better visualize the perpendicular polarizations
of eigenchannels 1 and 2, we have inserted an inset between these
two channels, showing the top atom of the left electrode in transport
direction. It shows both Re Q̃1(E) and Re Q̃2(E) on the dimer atoms.
Red are the displacements for eigenchannel 1, blue for eigenchannel
2, and the geometry has been rotated such that the displacement
vectors of channel 1 point out of plane. (b) The same as in (a),
but for an energy of 10.5 meV. The channel transmissions are τ1 =
0.968, τ2 = 0.122, and τ3 = 0.098. (c) The three highest transmission
coefficients as a function of energy for the gold atomic contact
shown in (a) and (b). The energies of the eigenchannels considered
in these two panels are indicated by arrows, and colored frames
around the channel representations serve to identify the corresponding
transmission values in (c).

1. Gold dimer contact

The heat conductance of gold atomic contacts has been
measured recently [5,6], and we have performed a detailed
theoretical analysis of the thermal transport due to both
electrons and phonons in these systems [5,59]. We focus
here on a gold contact that is one-atom thick and features a
dimer in the narrowest part. The geometry, which is shown in
Fig. 2, describes junctions with an electrical conductance of
the order of the electrical conductance quantum G0 = 2e2/h.
In Figs. 2(a)–2(c) we display the energy-dependent phonon
transmission together with eigenchannel representations for
two different energies, as indicated by arrows in the transmis-
sion plot.

In Fig. 2(a) we show the three eigenchannels with the
highest transmission for an energy of 1.5 meV. As one can
see, the first two channels correspond to modes with mainly
transverse character with respect to the transport direction,
whose polarizations are rather perpendicular to each other. For
the first channel, with a nearly perfect transmission τ1 ≈ 1,
the atomic displacements are almost symmetric on both sides
of the junction. In contrast, for the second channel, with a
transmission τ2 < 1, a reduced amplitude is seen on the right
part as compared to the left one. This illustrates that the wave
coming in from the left is mostly reflected at the central part
of the junction. The third channel shows a clearly longitudinal
character, and the amplitudes of atomic motion decay even
more rapidly from left to right because of the low transmission
probability τ3. Due to the small energy (E = 1.5 meV) chosen
in this example, the wavelength of atomic motion spans the
central part of the junction.

To explore the behavior of the eigenchannels at shorter
phonon wavelengths, we show in Fig. 2(b) the three most
transmissive eigenchannels for an energy of 10.5 meV. We find
that the first mode is of a pronounced longitudinal character
at the dimer in the center of the junction, and we see that
the dimer atoms often move with opposite velocities, i.e., the
out-of-phase character is strongly enhanced as compared to the
previous in-phase motion at E = 1.5 meV. Let us mention that,
as discussed for the 1D model, due to the smaller wavelength
of the vibrational modes at E = 10.5 meV, the displacements
at t = 0 are not maximal for all of the atoms, so in order
to get a better impression of the modes one has to look at
the time-dependent solution in Ref. [57]. For the other two
channels at the energy of E = 10.5 meV, the amplitudes on
the right junction side are, as expected, substantially reduced
due to the smaller transmission values τ2 and τ3. While the third
eigenchannel exhibits predominantly a longitudinal character
on the dimer atoms, no clear type can be assigned to the second
eigenchannel.

2. Alkane contact

The phonon transport in molecular junctions based on
alkane chains has been studied by several theoretical groups
employing different methods [22,63–65], and it has also been
explored experimentally in the context of many-molecule
junctions [66–70]. In Ref. [60] we have studied, in particular,
the length dependence of the phononic thermal conductance
in single-molecule junctions based on alkane chains. Here, we
focus on the analysis of a single-molecule junction containing
a dithiolated decane (i.e., an alkane chain with 10 CH2

segments) coupled to gold leads. In Figs. 3(a)–3(c), we dis-
play the energy-dependent transmission together with eigen-
channel representations at the two different energies indi-
cated by arrows in the transmission plot. The eigenchannels
are furthermore compared to normal modes of the isolated
molecule.

In Fig. 3(a) we show the eigenchannels with the three
highest transmission coefficients at the energy E = 7.61 meV.
In addition, we also show two vibrational modes of the free
molecule with energies of 6.4 and 9.8 meV. Compared to the
axis through the two terminal sulfur atoms, these modes can
be described as predominantly transversal, but they can also
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FIG. 3. (a) Transmission eigenchannels for an Au-decane-dithiol-
Au junction at an energy of 7.61 meV. We show the three eigen-
channels with the highest transmissions of τ1 = 1.00, τ2 = 0.84, and
τ3 = 0.13 as well as two vibrational modes of the free molecule at
energies of 6.4 and 9.8 meV. (b) The most transmissive eigenchannel
at an energy of 19.23 meV and a vibrational mode of the free molecule
at energy 18.76 meV. (c) Three highest transmission eigenvalues
as a function of energy for the Au-decane-dithiol-Au junction. The
energies of the eigenchannels shown in (a) and (b) are indicated with
arrows. In these two panels the angle of view differs for modes with
out-of-plane as compared to in-plane character.

be classified as out-of-plane and in-plane modes, respectively,
if we consider the plane spanned by the molecular backbone
of sulfur and carbon atoms. Based on the t = 0 snapshot,
the first eigenchannel shows some similarities with the first
mode of the free molecule at 6.4 meV, both modes having
a clear transversal, out-of-plane character and a change of
sign with respect to the center of the carbon chain. The other
two channels are closely related to a second mode of the free
molecule at 9.8 meV, which exhibits a transversal in-plane
character and one sign change when going from one end of the
carbon chain to the other one. Although the correspondence
for the third eigenchannel seems more obvious, the in-plane
character and the sign change are clearly visible for the second
one, too. Let us mention that we have changed the perspective
for all modes and eigenchannels with in-plane character as
compared to those with out-of-plane type to better visualize
the atomic motions involved.

Further insight into the nature of the eigenchannels can be
gained by looking at the full time-dependent solutions [57].
In the movies available in Ref. [57] one can see that the first
eigenchannel exhibits the transversal, out-of-plane character
that is already apparent in the static representation of Fig. 3(a).
For the second and third eigenchannels, the movies reveal
similar in-plane atomic motions inside the molecule, but when
compared to the sulfur-sulfur axis or those between the two Au
tip atoms, they also reveal a partially longitudinal character of
the second eigenchannel.

This example shows that an unambiguous identification of
the eigenchannels with the modes of the free molecule is not
always possible since in the junction the molecule is exposed

to different boundary conditions. Mathematically, this is also
evident when considering the phase factors related to traveling
waves [see the terms un(t,E) discussed in Sec. III A], which do
not appear in an isolated molecule. Nevertheless, a qualitative
relation of the eigenchannels to free modes can sometimes still
be seen.

In Fig. 3(b) we display the most transmissive eigenchannel
at an energy of 19.23 meV along with a vibrational mode
of the free molecule with energy 18.76 meV that exhibits a
very similar character. The eigenchannel in this case is mainly
of longitudinal, in-plane type, like the free-molecule mode.
Note the shorter wavelength of the propagating wave at the
higher energy in Fig. 3(b) as compared to Fig. 3(a) in the static
representation of the eigenchannel.

3. Brominated benzene-diamine contact

Another important example, in which the eigenchannel
concept provides a better understanding, is the case when
destructive interference effects occur in the phonon transport.
We have shown in Ref. [61] that the introduction of sub-
stituents in benzene molecules can lead to the appearance
of destructive interferences in corresponding single-molecule
junctions based on Au electrodes, despite their low Debye
energy. The interference effects are reflected in the appearance
of antiresonances in the phonon transmission.

In Fig. 4 we show the energy dependence of the three
largest eigenchannel transmissions of an Au-2-bromo-1,4-
diaminobenzene-Au junction studied in Ref. [61], in which an
antiresonance appears at around 19 meV. We have attributed
this antiresonance to the interference of the two out-of-plane
modes of the free molecule that lie close in energy at 15.61 and
20.07 meV and that are shown in the upper part of Fig. 4. In
that figure we also display the most transmissive eigenchannel
for three different energies, which dominates the phonon
transport. As can be seen, all the eigenchannels exhibit indeed

FIG. 4. The three highest eigenchannel transmissions as a func-
tion of energy for a Au-2-bromo-1,4-diaminobenzene-Au junction.
Above the graph, one can see the eigenchannels with the highest
transmission for the three different energies of 17.03, 18.85, and
19.37 meV. The energies are selected by peaks of τ1 in the trans-
mission plot and are indicated by corresponding arrows. Above the
eigenchannels we show the vibrational modes of the free molecule
that are responsible for the destructive interference.

155432-9



J. C. KLÖCKNER, J. C. CUEVAS, AND F. PAULY PHYSICAL REVIEW B 97, 155432 (2018)

a character that resembles the out-of-plane character (with
respect to the molecular plane) of the two vibrational modes of
the free molecule. Below the interference, one would naively
expect the eigenchannel to resemble the first eigenmode of the
free molecule, while above it could be related to the second
mode of the free molecule. However, and in spite of the fact
that the second mode of the free molecule and the highest
eigenmode are similar, a simple one-to-one correspondence
cannot be established, especially for the first eigenchannel.
Again, as in the alkane example, this is partially due to the
perturbation of the molecular modes due to the presence of the
metal atoms. In addition, since both molecular vibrations are
close in energy, the eigenchannel is actually a mixture of both
of them with different, non-negligible weights. Moreover, in
the static picture of the eigenchannel shown in Fig. 4, one can
see a jump of π in the phase of molecular motion as compared
to the Au reference atoms, which is reflected by the fact that the
arrows on the molecule point in opposite directions at energies
above and below the antiresonance. This jump in the phase
is a well-known phenomenon that accompanies destructive
interference of various properties in the electronic transport
[71,72] and, in general, in the Fano model [73].

Our example illustrates how the eigenchannel concept
helps to identify the molecular origin of destructive quantum
interference. This is particularly useful in cases in which is
not easy to figure out the vibrational modes responsible for
the interference phenomenon because of the presence of many
other modes in that energy region or because the energies of
the vibrations of the free molecule are strongly renormalized
by the hybridization with the metallic leads when the molecule
is connected to the electrodes.

4. C60 contact

Let us now discuss the case of an Au-C60-Au junction
(see Fig. 5), which we have analyzed in Ref. [62] in the
context of the thermoelectric figure of merit of fullerene-based
junctions. This is a very interesting case because so far we
have dealt with molecular junctions where at least one of the
modes of the molecule was inside the energy window set by the

FIG. 5. The three largest transmission coefficients for a Au-
C60-Au junction as a function of energy. The most transmissive
eigenchannels at energies of 5.4, 6.0, and 7.8 meV, as indicated by
arrows in the transmission plot, are shown in the upper part of the
figure.

gold Debye energy. In the C60 case, however, all the vibrational
modes of the free molecule have energies clearly above that
threshold. So, one may wonder how phonon transport can occur
in this junction. This can be nicely answered with the help of
the transmission eigenchannels.

For this purpose, we present in Fig. 5 the most transmissive
eigenchannels at energies of 5.4, 6.0, and 7.8 meV above a plot
of the energy-dependent transmission. As one can see, all the
eigenchannels correspond to a hybridization of the vibrations
of the gold atoms with the center-of-mass motion of the C60

molecule. The eigenchannel at 5.4 meV possesses a transversal
character, where the molecule moves up and down as a whole,
and it also involves transversal motions of the gold atoms in the
electrode tips. The eigenchannel at 6.0 meV involves a rotation
of the molecule that is again coupled to transversal vibrations of
the gold atoms. Finally, the eigenchannel at 7.8 meV involves a
longitudinal center-of-mass motion of the C60 that is coupled to
a predominantly longitudinal movement of the Au tip atoms.
Let us point out that in the movies of the eigenchannels, a
small deformation of the C60 molecule can also be seen in all
three examples in addition to the main center-of-mass motion
highlighted by the static pictures [57].

IV. CONCLUSIONS

In this work, and in analogy with what is done in elec-
tronic transport, we have presented a method to obtain the
transmission eigenchannels from NEGF-based calculations of
the coherent phonon transport. In particular, we have shown
that this method can be combined with ab initio simulations to
provide an insight into phonon transport that cannot simply
be obtained from the analysis of the transmission proba-
bilities. We have illustrated this approach with the analysis
of the phonon eigenchannels in realistic atomic-scale junc-
tions, including single-atom and single-molecule junctions.
Moreover, we have discussed different ways to visualize
these eigenchannels by means of static and time-dependent
representations. We believe that the procedure presented in this
work will become a valuable tool for the analysis of coherent
phonon transport in a great variety of nanoscale systems and
devices.
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