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Effects of Event-Free Noise Signals on
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Abstract: Generating stochastic input signals such as noise in physical systems is traditionally
implemented using discrete random number generators based on discrete time-events. Within the
Modelica community, time-event free random number generators have recently been proposed
in order to increase the performance of system simulations. However, the impact of such signals
on commonly used solvers, such as DASSL or Radau IIA, is still under discussion. In order
to provide better understanding for modeling practitioners, we examine the influence of event-
free noise models on simulation performance. To this end, we conduct practical simulation
experiments with systems of three sizes, two solvers, and different parameters. Results indicate
that step-size control can handle event-free noise generators well and that they outperform
sampled generators. The findings can be related to other time-dependent system inputs.

Keywords: Numerical simulation, Random number generators, Continuous time systems,
Integrators, Software performance

1. INTRODUCTION

Noise or other stochastic input signals are omnipresent
in realistic system simulation. Adding noise to a nominal
system simulation is especially important for assessing
a system’s performance or to evaluate a controller’s
properties. However, simulation of natural fluctuations is
not limited to control design, but also applies to various
other fields such as aircraft airworthiness requirements
(e.g. EASA, 2007), estimating power outcomes of wind
energy farms (e.g. Justus et al., 1976), or interpretation
of experimental sensor readings (e.g. Márton and van der
Linden, 2012).

Typical noise generators are discrete-time processes, re-
lying on recursively perturbing an internal state. Each
perturbation of this state is represented by a time-event in
the simulation. The high frequency of typical noise signals
thus causes a high number of time-events. This results
in small step-sizes for the ODE solver and consequently
high computational cost. See e.g. Felgner and Frey (2010),
where the influence of different solvers is investigated on
continuous, stiff and hybrid systems.

Most modelers today use robust ODE or DAE solvers that
are suitable for highly stiff systems such as DASSL (Petzold,
1982) or Radau IIA (see e.g. Hairer and Wanner, 1996).
Especially multi-step methods like DASSL suffer from the
large number of time-events since the restart at each time-
event is computationally expensive (see e.g. Lundvall and
Fritzson, 2005). But also for implicit Runge-Kutta method
as Radau IIA, the enforced step-sizes are often much lower
than what would be required for the demanded precision.

Recent work therefore proposes to generate event-free
continuous-time noise signals (Klöckner et al., 2014). The

signals are generated directly as a function of time. This
eliminates the need to generate events. Instead, it puts the
step-size control of the ODE solver in charge. However, the
performance impact of such signals on the ODE solvers is
not yet fully understood. The general proposition claimed
is that step-size control will handle the influences of such
signals reasonably well, if suitably smooth interpolation
functions are used and the frequency content is bounded.
In this case, the polynomial approximations used for error
estimations should work adequately.

Here, we investigate the effects of such event-free noise on
the integrator accuracy and cost (i.e. number of function
calls and run-time). Our expectations are that (a) sampled
noise introduces a relatively constant cost for all accuracies
due to the step-size being limited by event instances,
that (b) variable step-size integrators can indeed handle
event-free noise signals by selecting suitable step-sizes,
that (c) event-free noise outperforms sampled noise for low
accuracies by allowing larger step-sizes, that (d) smooth
interpolations further decrease the cost of noise simulation.

(1) We thus first introduce sampled and event-free noise
signals as used in this study in Sec. 2.

(2) The influence of the noise signals on a simple integrator
model’s performance is then compared as a function
of the desired accuracy in Sec. 3.

(3) The example model is extended to a critical damping
with 50 states in Sec. 3.2.

(4) We finally show the influence of the noise amplitude
relative to the system states in Sec. 4.

Although we use noise signals in this work, the results are
also relevant for other types of signals. These include e.g.
interpolation tables or sine waves, as long as the signals
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Fig. 1. A high diffusion capacity allows to retrieve random
numbers from an algorithm after a few iterations.
Here, ten steps allow to recover from a bad seed (see
Klöckner et al., 2014, Fig. 3).

are generated directly as a function of the time rather than
of the system states.

2. RANDOM SIGNALS

For this work, we use the Modelica Noise library (Klöckner
et al., 2014). It allows to modularly compose a random
number generator, a probability density function, and an
interpolation function for the noise signal. The signal is
then readily available for complex multi-physics simulations
built on the modeling language Modelica.

Several standard sampled random number generators are
provided, which all make use of a discrete-time state vector
s. The model generates events every ∆t seconds and iterates
the state vector from spre to snew in order to yield a new
random value r:

snew = f(spre),

r = g(snew).
(1)

The library additionally introduces a new, continuous-
time type of random number generator: DIRCS Immediate
Random with Continuous Seed (DIRCS). It relies heavily on
the diffusion capacity of certain random number generators:
They deliver high-quality random numbers after a few
iterations of the algorithm on a poor, non-random seed.
Simple generators recover reasonably well after a few steps
(see Fig. 1). This ability is exploited by seeding the random
number generator with a simple function of time, such as
shown in Eq. 2. The approach completely eliminates the
need for discrete states in the noise model.

int s [2] = (int∗) (&time); (2)

In this work, we use uniformly distributed random numbers
generated by a simple, multiple recursive generator with
the two states s1 and s2. The same generator is used for
the discrete-time algorithm as well as within the DIRCS
algorithm in order to yield comparable results in terms
of run-time. The quality of the random number is not
of interest in this study. The algorithm used is given
in Eq. 3. The parameters are heuristically chosen to be
ai = 134775813 and c = 2147483629.

snew1 =
∑

ai · sprei + 1 mod c

snew2 = spre1

r = snew1 /c

(3)

The library also provides three different types of interpo-
lation: The first implements a sample-and-hold behavior,
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Fig. 2. This study uses the “raw” sample-and-hold noise
signal (i.e. no interpolation), the “linear” interpo-
lation, and the continuous “sinc” interpolation (see
Klöckner et al., 2014, Fig. 4).

the second is a linear interpolation, and the third applies a
smooth interpolation using the sinc function as kernel. The
three interpolations are shown conceptually in Fig. 2. The
sinc interpolation has very good low-pass characteristics. In
this study, we use all three interpolation functions in order
to compare the effect of the interpolation’s smoothness on
the solver performance. Note that all interpolations can be
used with the sampled as well as the sample-free method.

3. EFFECTS ON SOLVER PERFORMANCE

In this section we study the behavior of two commonly
used solvers (DASSL & Radau IIA order 5) and the
influence of interpolation of the event-free noise signal
on the simulation.

To study these effects, two systems have been analyzed:
A trivial system with one state and a larger system with
50 states. These systems will be studied in the following
sections. The proposed systems are simulated using the
DASSL and Radau IIA order 5 solvers implemented in
Dymola 2015 on a Windows based computer (Intel Xeon
E5-1620, 16GB ram). The influence of the solver accuracy
on the number of function evaluations and the simulation
time is assessed. The systems are simulated 5000 seconds
to minimize the influence of initialization effects.

3.1 Single state integrator system

To study the effects of event-free noise on a simple example,
a system is set up using Dymola combining a noise generator
and an integrator (see Figure 3a). This system represents
a simple model with only a single state. The noise is
configured to produce a uniform noise on the interval [-1e-
3,1e-3].

In the top two diagrams of Figure 4, the amount of evalua-
tions of the function ẋ = f(x,u, t) and the computational

(a) simple intgrator (b) critical damping

Fig. 3. Noise generator coupled to two systems: A simple
integrator as a trivial system with one state and a
critical damping as a system with 50 states.



time to simulate the system using the DASSL solver is
shown. As expected, the computational effort for the
sampled method is almost constant, i.e. it is independent of
the demanded integrator accuracy. The sample free DIRCS
method needs less computational effort than sampled
methods for loose tolerances. The effort needed for the
sample-free noise signal approaches and eventually exceeds
the effort for sampled noise for very tight tolerances. This
effect can be explained as follows:

• The sampled system halts the solver at each sample,
independent of the tolerance and restarts the calcula-
tion. This leads to an almost unchanged simulation
effort.

• As long as the error tolerance of the solver is above
the amplitude of the noise, the solver can neglect the
noisy input of the event-free system. This leads to a
reduction of simulation effort.

• At tight tolerances, the solver will try to exactly
follow the noise signal. However, when this signal
contains discrete steps in its value or in its derivatives,
the polynomial-based error estimations of the solver
perform badly. For non-interpolated signals, a restart
at the time-event is then the better strategy, leading to
slightly less computational effort for sampled systems.

A higher order interpolation routine leads to a reduction
in function evaluations for the event-free methods. The
smoother signal makes it easier for the solver to follow
the event-free noisy signal and can therefore reduce the
amount of steps. The interpolation function itself though
can increase the costs per function evaluation. The results
of the simulation using the Radau IIA solver can be seen
in the bottom two diagrams of Figure 4. The Radau IIA
solver is especially suitable for stiff systems. Since systems
with noise are almost always stiff due to the combination of
high frequency noise on a low bandwith system. The results
from this test show that the Radau IIA solver has a similar
behaviour as the DASSL solver. Since the tolerances of
both solvers cannot be directly compared, no conclusions
about the performance can be made.

3.2 Critical damping system with 50 states

To investigate the effect of noise on nontrivial systems, an
example model has been created. A critical damping block
with a cut-off frequency of 10 Hz of order 50 is coupled to
the noise generator. This yields a system with 50 states.
The critical damping block has following transfer function:

y =
1(

s
ω + 1

)nu (4)

with α =

√
2( 1

n ) − 1 and ω = 2π fα . Here f is the cut off
frequency in Hz and n the system order. The set up of the
system can be seen in Figure 3b It is expected that in a
system with 50 states, a solver restart will have a relatively
heavy penalty on the simulation performance. A better
interpolated signal is therefore expected to have a positive
influence on the performance of the solvers.

The results from the system with 50 states using the DASSL
solver with the same setup as used before can be seen
in the top two diagrams of Figure 5. The penalty on a
higher interpolation routine is not as high as in the simple
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Fig. 4. Function evaluations and simulation time as a
function of the integrator tolerance for a simple sys-
tem and different interpolation methods. Dashed lines
represent the sample based method, solid lines the
sample free DIRCS method. Sample-free noise reduces
computational costs, especially with loose tolerances.



system. When observing the CPU-time for the integration,
it becomes clear that at higher integrator tolerances a
better interpolation of the event-free noise leads to a better
performance of the solver. The simulation time of the sinc
interpolated event-free signal is always below the sampled
methods. In most real-life systems, an event-free signal
can therefore be preferred over a sampled signal. This
is even true at very high system accuracies. The results
from the same analysis as before using the Radau IIA
solver can be seen in the bottom two diagrams of Figure
5. Using the Radau IIA solver, a similar pattern can be
observed; the Sinc-interpolated, event-free method is for
most tolerances the most suitable interpolation method.
Using this combination, the method is always faster as all
sampled methods. However, the advantage is minimal for
very tight tolerances.

3.3 Error evaluation

Figure 6 shows the mean of the absolute difference between
the simulations discussed in the previous subsections and a
reference solution simulated with a relative solver tolerance
of 1 × 10−9. The measure is evaluated over 2 500 000 grid
points of the simulations lasting 500 s with random numbers
generated at 100 Hz. Zero error is limited to 1 × 10−10 for
plotting. Note that the values can only be interpreted
relative to each other as no meaningful scaling exist .

For the integrator system and unsampled noise, the error
measure is linearly dependent on the demanded solver
tolerance. This shows the convergence of the simulation
using an event-free noise generator. The error using sampled
noise is zero, if no interpolation is used; independent of the
solver choice. Using the Radau IIA solver, the error is also
zero for linear interpolation. As expected, the tolerance has
almost no influence on the error of sampled noise, because
the step-size is mainly controlled by the events generate
by the noise model. Using the sinc interpolation results
in medium error levels. This shows the influence of the
interpolation complexity on the error level.

In the critical damping simulation, there is no setting with
zero error. This system is sufficiently complex to require
additional steps in between the events instances. Unless
a certain tolerance is demanded, the error value is nearly
constant. This is an indicator that the system cannot be
sufficiently resolved using the specified tolerance. Using
tighter tolerances, results in a kink of the curves and a
linear dependency of the error level on the tolerance can
again be observed. The system is sufficiently resolved with
these tolerances and converges to the reference solution.
There is no error advantage of sampled or unsampled noise
generators in this region, if the DASSL solver is used. A
similar effect is also observed with the integrator system
and sampled sinc interpolation, using the DASSL solver.

The Radau IIA solver produces a similar error pattern
as the DASSL solver for the critical damping system and
unsampled noise. The kink in the curves is at tighter toler-
ances as compared to the DASSL solver. This corresponds
well with the findings concerning function evaluations and
simulation time. The sampled noise results in surprisingly
high error levels, which cannot be explained in the scope
of this paper.
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Fig. 5. Function evaluations and simulation time as a
function of the integrator tolerance for a complex sys-
tem and different interpolation methods. The findings
from the simple system are confirmed. Dashed lines
represent the sample based method, solid lines the
sample free DIRCS method.
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Fig. 6. Comparison of the mean absolute error to reference
simulation (tol=1e-9 for 500 samples per second).
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lines the sample free DIRCS method. The sample-free
methods converge to the reference solution.

Fig. 7. An undamped spring-mass system is used to show
the effects of noise on a physical system simulation.

4. EFFECTS ON A PHYSICAL SYSTEM

To investigate the effects of different noise levels on a
physical system, an undamped spring-mass system is
modeled using a mass of m = 1 kg and a spring stiffness
of c = 2πN/m (see Fig. 7). The system is perturbed
by moving the fixes point of the spring with a normally
distributed and smooth interpolated random variable u.
The resulting linear system is given by Eq. 5. The system
is initialized with a fixed starting position of x0 = 1 m and
ẋ0 = 0 m/s.

m · ẍ = −c · (x+ u) (5)

The system is simulated using the DASSL and Radau IIA
solvers with a fixed tolerance of 10−4 for a simulation time
of 5000 s. The variance of the perturbation is manipulated
between Var(u) = 10−8 m and 1 m and the number of func-
tion evaluations and the simulation are recorded. Figure 8
shows the results for both the event-free random number
generator and the sampled random number generator. Both
solvers show similar dependencies of the performance on
the demanded tolerance.

Using a sampled noise confirms the findings from the
preceding sections. The number of function evaluations
as well as the simulation time are nearly constant for all
noise amplitudes. Both only increase at very high noise
amplitudes in the order of the natural oscillation of the
system, when using the DASSL solver.

An event-free noise generator decreases the number of
function evaluations, as well as the simulation time by
more than an order of magnitude for small disturbances
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below a threshold of approximately 10−4 m. This threshold
correlates to the desired simulation accuracy of 10−4

times the natural oscillation amplitude of 1 m. Below the
threshold, the system is unaffected by the noise. Above
this threshold, the number of function evaluations as well
as the simulation time increase with stronger disturbances.
If the noise amplitude is in the same order of magnitude as
the nominal system oscillation, the event-free simulation
outperforms the model with sampled noise by roughly a
factor of 2.

We have found that continuous-time noise does not deterio-
rate simulation performance, as long as the noise amplitude
is below the solver accuracy. The solver naturally excludes
irrelevant noise from a system simulation. The sampled
generator strongly affects the simulation performance, even
if the noise is irrelevant to the system’s states. Additionally,
even if the noise is relevant for the system simulation, an
event-free and smooth noise signal improves simulation
performance.

5. CONCLUSIONS AND DISCUSSION

In this paper we have investigated the influence of event-
free noise on two standard solvers: DASSL and Radau IIA
order 5. It is found that both investigated solvers show an
almost constant computational effort for the simulation of
event-based noise signals, independent of solver tolerance.

The assessed variable step size solvers can handle the event-
free noise signals according to the tolerance settings of the
solver: Using a tolerances larger than the noise amplitude,
the solver mostly ignores the noise. If the tolerance is
chosen below the amplitude of the signal, the solver used
the event-free noise signal for the solution.

Event-free noise has a lower computational cost compared
to the event-based noise at high tolerances for all analyzed
models. For low tolerances, event-free noise also outper-
forms sampled noise, if non-trivial systems are assessed
and if continuous interpolations such as the linear or the
sinc interpolation are used.

Interpolating the noise signal avoids discontinuous signals
and helps the solver to reduce the number of necessary
integration steps. Depending on the effort for a single
time step, compared to the effort of the interpolation, this
can lead to lower or higher CPU times for the simulation.
Large systems benefit of the lower amount of function calls,
whereas in simple systems the penalty of the interpolation
for each function call can be higher than the advantage
of reducing the number of function calls. Since a linear
interpolation has a low calculation effort, in most cases this
leads to a lower simulation time. The sinc interpolation
becomes interesting when the model is large and a function
call poses high computational cost.

When using sample-free noise, care must be taken on how
to choose the solver tolerances. When a high tolerance is
selected, the solver will ignore the influence of the sample-
free noise. Only if the tolerance is chosen appropriately,
the effect of the noise becomes visible in the simulation
results. This effect can be used to always include all noise
sources in a physical system simulation: only the signals,
which influence the behavior of the system, will lead to an
increase in simulation times.

Care must also be taken, when heavy tailed distributions
like the Cauchy distribution are used. Such distributions
have a very large or undefined variance and might not be
properly evaluated using a sample-free method, because
the solver might not evaluate single large peaks. In this
case an event-based method should be used to guarantee
proper results.

REPRODUCIBLE RESEARCH

The results of this paper can be reproduced using the code
available on http://dlr-sr.github.io.
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