257 research outputs found

    Оголені душі

    Get PDF
    Рецензія на книги: Слапчук Василь. Осiнь за щокою: Роман. - К.: Факт, 2006. - 280 с. та Сорока Петро. Денники 2004 - 2005. - Тернопiль: Сорока, 2006. - 364 с

    Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System

    Get PDF
    Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have unpredictable consequences on pneumococcal colonization dynamics by activating genes that mediate intra-specific interference competition

    Maternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies With Gestational Diabetes Mellitus

    Get PDF
    OBJECTIVE—To determine the contribution of maternal glucose and lipids to intrauterine metabolic environment and fetal growth in pregnancies with gestational diabetes mellitus (GDM)

    The function of CozE proteins is linked to lipoteichoic acid biosynthesis in Staphylococcus aureus.

    Get PDF
    Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in Staphylococcus aureus. We establish that there is a synthetic lethal relationship between CozE and UgtP, the enzyme synthesizing the LTA glycolipid anchor Glc <sub>2</sub> DAG. By contrast, in cells lacking LtaA, the flippase of Glc <sub>2</sub> DAG, the essentiality of CozE proteins was alleviated, suggesting that the function of CozE proteins is linked to the synthesis and flipping of the glycolipid anchor. CozE proteins were indeed found to modulate the flipping activity of LtaA in vitro. Furthermore, CozEb was shown to control LTA polymer length and stability. Together, these findings establish CozE proteins as novel players in membrane homeostasis and LTA biosynthesis in S. aureus.IMPORTANCELipoteichoic acids are major constituents of the cell wall of Gram-positive bacteria. These anionic polymers are important virulence factors and modulators of antibiotic susceptibility in the important pathogen Staphylococcus aureus. They are also critical for maintaining cell integrity and facilitating proper cell division. In this work, we discover that a family of membrane proteins named CozE is involved in the biosynthesis of lipoteichoic acids (LTAs) in S. aureus. CozE proteins have previously been shown to affect bacterial cell division, but we here show that these proteins affect LTA length and stability, as well as the flipping of glycolipids between membrane leaflets. This new mechanism of LTA control may thus have implications for the virulence and antibiotic susceptibility of S. aureus

    Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas

    Get PDF
    Neglected tropical diseases (NTDs) have\ud been recently identified as significant public\ud health problems in Texas and elsewhere in\ud the American South. A one-day forum on the\ud landscape of research and development and\ud the hidden burden of NTDs in Texas\ud explored the next steps to coordinate advocacy,\ud public health, and research into a\ud cogent health policy framework for the\ud American NTDs. It also highlighted how\ud U.S.-funded global health research can serve\ud to combat these health disparities in the\ud United States, in addition to benefiting\ud communities abroad

    Chagas Disease Risk in Texas

    Get PDF
    Chagas disease is endemic in Texas and spread through triatomine insect vectors known as kissing bugs, assassin bugs, or cone–nosed bugs, which transmit the protozoan parasite, Trypanosoma cruzi. We examined the threat of Chagas disease due to the three most prevalent vector species and from human case occurrences and human population data at the county level. We modeled the distribution of each vector species using occurrence data from México and the United States and environmental variables. We then computed the ecological risk from the distribution models and combined it with disease incidence data to produce a composite risk map which was subsequently used to calculate the populations expected to be at risk for the disease. South Texas had the highest relative risk. We recommend mandatory reporting of Chagas disease in Texas, testing of blood donations in high risk counties, human and canine testing for Chagas disease antibodies in high risk counties, and that a joint initiative be developed between the United States and México to combat Chagas disease

    Host Glycan Sugar-Specific Pathways in Streptococcus pneumonia:Galactose as a Key Sugar in Colonisation and Infection

    Get PDF
    The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis
    corecore