28 research outputs found

    Reduced Alcohol Seeking and Withdrawal Symptoms in Mice Lacking the BDNF Receptor SorCS2

    Get PDF
    Alcohol use disorder (AUD) is characterized by repetitive and uncontrolled intake of alcohol with severe consequences for affected individuals, their families and society as a whole. Numerous studies have implicated brain-derived neurotrophic factor (BDNF) activity in the neurobiology underlying AUD. The BDNF signaling mechanism is complex and depends on two receptor systems, TrkB and p75NTR, which appear to have opposite effects on alcohol seeking behavior in animal models. We recently discovered that the sortilin-related receptor SorCS2 forms complexes with both TrkB and p75NTR and is important for BDNF activity in the developing and adult CNS. Moreover, the SORCS2 gene was recently identified as the top association signal for severity of alcohol withdrawal symptoms. Hence, we speculated that SorCS2 deficient mice would have an altered response to alcohol. The role of SorCS2 in the acute and adapted response to alcohol was therefore investigated by comparing SorCS2 knockout (Sorcs2−/−) mice to wild type (WT) mice in three paradigms modeling alcohol sensitivity and consumption; alcohol-induced conditioned place preference, two-bottle choice test as well as the behavioral response to alcohol withdrawal. We found that, when compared to the WT mice, (I) Sorcs2−/− mice displayed complete lack of alcohol-induced place preference, (II) when given free choice between water and alcohol, Sorcs2−/− mice consumed less alcohol, and (III) Sorcs2−/− mice showed no handling-induced convulsion in response to alcohol withdrawal following extended alcohol exposure. Taken together, these results show that lack of the alcohol withdrawal risk gene Sorcs2 results in abnormal behavioral response to alcohol in mice. Consequently, SorCS2 may play an important role in the molecular pathways underlying AUD and complications associated with alcohol withdrawal

    Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity.

    Get PDF
    BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation

    Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall

    Get PDF
    BACKGROUND AND AIMS: Type 1 diabetes accelerates the development of atherosclerotic cardiovascular diseases. Retention of low-density lipoprotein (LDL) in the arterial wall is a causal step in atherogenesis, but it is unknown whether diabetes alters the propensity of LDL for retention. The present study investigated whether LDL from type 1 diabetic and healthy non-diabetic subjects differed in their ability to bind to the arterial wall in a type 1 diabetic mouse model. METHODS: Fluorescently-labeled LDL obtained from type 1 diabetic patients or healthy controls was injected into mice with type 1 diabetes. The amount of retained LDL in the atherosclerosis-prone inner curvature of the aortic arch was quantified by fluorescence microscopy. Healthy control LDL was in vitro glycated, analyzed for protein glycation by LC-MS/MS, and tested for retention propensity. RESULTS: Retention of LDL from type 1 diabetic patients was 4.35-fold higher compared to LDL from nondiabetic subjects. Nuclear magnetic resonance (NMR) spectroscopy analysis of LDL revealed no differences in the concentration of the atherogenic small dense LDL between type 1 diabetic and non-diabetic subjects. In vitro glycation of LDL from a non-diabetic subject increased retention compared to non-glycated LDL. LC-MS/MS revealed four new glycated spots in the protein sequence of ApoB of in vitro glycated LDL. CONCLUSIONS: LDL from type 1 diabetic patients showed increased retention at atherosclerosis-prone sites in the arterial wall of diabetic mice. Glycation of LDL is one modification that may increase retention, but other, yet unknown, mechanisms are also likely to contribute.This work was supported by The Arvid Nilssons Foundation, Fonden til Laegevidenskabens Fremme, Snedkermester Sophus Jacobsen & Hustru Astrid Jacobsens Fond, Laegeforeningen, The Novo Nordisk Foundation, John and Birthe Meyer Foundation, The Danish Council for Independent Research (10-093408) and Danish Diabetes Academy. AGRADECIENTOS

    Type 1 diabetes increases retention of low-density lipoprotein in the atherosclerosis-prone area of the murine aorta

    Get PDF
    BACKGROUND AND AIMS: Individuals with type 1 diabetes mellitus are at high risk of developing atherosclerotic cardiovascular disease, but the underlying mechanisms by which type 1 diabetes accelerates atherosclerosis remain unknown. Increased retention of low-density lipoprotein (LDL) in atherosclerosis-prone sites of the diabetic vascular wall has been suggested, but direct evidence is lacking. In the present study, we investigated whether retention of LDL is increased in atherosclerotic-prone areas using a murine model of type 1 diabetes. METHODS: Fluorescently-labeled human LDL from healthy non-diabetic individuals was injected into diabetic Ins2Akita mice and non-diabetic, wild-type littermates. The amount of retained LDL after 24 h was quantified by fluorescence microscopy of cryosections and by scans of en face preparations. Vascular gene expression in the inner curvature of the aortic arch was analyzed by microarray and quantitative polymerase chain reaction. RESULTS: LDL retention was readily detected in atherosclerosis-prone areas of the aortic arch being located in both intimal and medial layers. Quantitative microscopy revealed 8.1-fold more retained LDL in type 1 diabetic mice compared to wild-type mice. These findings were confirmed in independent experiments using near-infrared scanning of en face preparations of the aorta. Diabetic status did not affect arterial expression of genes known to be involved in LDL retention. CONCLUSIONS: Type 1 diabetes increases the ability of the vascular wall to retain LDL in mice. These changes could contribute to the increased atherosclerotic burden seen in type 1 diabetic patients.This work was supported by The Arvid Nilssons Foundation, Fonden til Laegevidenskabens Fremme, Snedkermester Sophus Jacobsen & Hustru Astrid Jacobsens Fond, Laegeforeningen, The Novo Nordisk Foundation and The Danish Council for Independent Research (10-093408).S
    corecore