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SUMMARY

Glial cell-line-derived neurotrophic factor (GDNF) is
a potent neurotrophic factor that has reached clinical
trials for Parkinson’s disease. GDNF binds to its
coreceptor GFRa1 and signals through the trans-
membrane receptor tyrosine kinase RET, or RET in-
dependently through NCAMor syndecan-3.Whereas
the GDNF signaling cascades are well described,
cellular turnover and trafficking of GDNF and its
receptors remain poorly characterized. Here, we
find that SorLA acts as sorting receptor for the
GDNF/GFRa1 complex, directing it from the cell
surface to endosomes. Through this mechanism,
GDNF is targeted to lysosomes and degraded while
GFRa1 recycles, creating an efficient GDNF clear-
ance pathway. The SorLA/GFRa1 complex further
targets RET for endocytosis but not for degrada-
tion, affectingGDNF-induced neurotrophic activities.
SorLA-deficient mice display elevated GDNF levels,
altered dopaminergic function, marked hyperac-
tivity, and reduced anxiety, all of which are pheno-
types related to abnormal GDNF activity. Taken
together, these findings establish SorLA as a critical
regulator of GDNF activity in the CNS.
INTRODUCTION

Neurotrophic factors are key molecules in sculpting the devel-

oping nervous system as well as regulating adult neuronal main-

tenance and plasticity. Glial cell line-derived neurotrophic factor

(GDNF) is essential for the development of several neuronal pop-

ulations (Airaksinen and Saarma, 2002), and a critical survival

factor for a number of neuronal subtypes, most notably midbrain

dopaminergic (DA) neurons (Lin et al., 1993). More specifically,

GDNF protects and repairs nigral DA neurons in neurotoxin-
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lesioned animal models of Parkinson’s disease (Kirik et al.,

2004), and phase I clinical trials with parkinsonian patients,

GDNF gave highly promising results that were unfortunately

hampered by conflicting outcome from phase II studies (Gill

et al., 2003; Lang et al., 2006).

GDNF is a homodimeric neurotrophic factor belonging to the

GDNF family ligands (GFLs) together with neurturin, persephin,

and artemin (Airaksinen and Saarma, 2002). GDNF signaling is

conventionally mediated via two receptors. First, the GDNF

dimer binds GDNF family receptor a1 (GFRa1), which is linked

to the plasma membrane through a glycosylphosphatidylinositol

anchor. The resulting tetrameric (2:2) complex interacts with

Rearranged During Transfection (RET) receptor tyrosine kinase

and activates Erk, Akt, Src, and PLCg pathways (Airaksinen

and Saarma, 2002). Although RET is the established GDNF

signaling receptor, many cells responding toGDNF and express-

ing GFRa1 do not express RET (Trupp et al., 1997; Yu et al.,

1998). To date, two alternative receptors have been discovered:

neural cell adhesion molecule N-CAM and syndecan-3 (Bespa-

lov et al., 2011; Paratcha et al., 2003). In both cases, the

ligand-receptor interaction leads to the activation of Src family

kinases, modulating cell migration, neurite outgrowth, and syn-

apse formation (Bespalov et al., 2011; Ibáñez, 2010).

Despite the progress in characterizing GDNF receptors and

their signaling pathways, still very little is known about their traf-

ficking and how GDNF activity is regulated. Due to alternative

splicing, GDNF is synthesized in two precursor forms (a)- and

(b)proGDNF that are sorted differentially through the secretory

pathway prior to propeptide cleavage by a proprotein con-

vertase (Lonka-Nevalaita et al., 2010), a process proposed to

involve the sorting receptor SorLA (Geng et al., 2011; Wester-

gaard et al., 2004). SorLA is one of five members of the sorti-

lin-related receptor family (sortilins), unified by the vacuolar

protein sorting protein 10p (Vps10p) domain (Jacobsen et al.,

1996; Willnow et al., 2008). The cytoplasmic tail of SorLA

contains several consensus binding sites for adaptor proteins

that mediate internalization from the cell surface, Golgi-endo-

some transport, and retrograde sorting to the TGN (Nielsen

et al., 2007). In the present study, we find that SorLA conveys

mailto:sg@biokemi.au.dk
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internalization of GFRa1 alone and in complex with GDNF and

mediates their sorting to endosomal compartments. GFRa1

bypasses lysosomal degradation, whereas GDNF does not.

The SorLA/GFRa1 complex further mediates subcellular sorting

of RET, influencing GDNF-induced neurotrophic activity includ-

ing the survival of primary DA neurons. SorLA-deficient mice

have increased GDNF levels in the striatum andmidbrain and ex-

hibit a behavioral phenotype characterized by reduced anxiety,

hyperactivity, and insensitivity to amphetamine, symptoms remi-

niscent of attention deficit hyperactivity disorder (ADHD) in

humans.

RESULTS

SorLA Selectively Binds GDNF
GDNFbound to the extracellular domain of SorLA in a concentra-

tion-dependent manner as assessed using Biacore (Figure 1A).

The interaction was of high affinity with a Kd of 3 nM, and selec-

tive as no other GFL showed binding to SorLA (Figure 1B). GDNF

is unique among the GFLs by containing an extended N terminus

of 38 amino acids (Baloh et al., 2000). As this region might

contribute to SorLA binding, we generated a glutathione S-trans-

ferase (GST) fusion peptide encompassing theGDNF propeptide

followed by the N-terminal extension (GDNF aa 20–115). This

peptide bound SorLA with a Kd of 76 nM, whereas neither

GST-GDNF propeptide (GDNF aa 20–77) nor GST-neurturin pro-

peptide displayed any binding, clearly indicating that the GDNF

N-terminal region is involved in binding of SorLA (Figure 1C

and data not shown). The �25-fold difference in the affinity of

GDNF to SorLA compared to the N-terminal peptide could be

due to additional degrees of freedom of the peptide fragment

when not covalently associated with the folded structure of

GDNF. However, at present, the involvement of other GDNF

regions in SorLA binding cannot be excluded either. SorLA is

a large mosaic receptor containing several potential ligand

binding domains, one of which is the Vps10p domain (Figure 1D).

Prior to its removal in late Golgi compartments, the SorLA pro-

peptide inhibits access to this domain (Jacobsen et al., 2001).

We found that excess SorLA propeptide prevented the binding

of GDNF to SorLA (Figure S1A). In analogy, 200-fold molar

excess of the small neuropeptide neurotensin, predicted to

bind inside the tunnel-like cavity of the SorLA Vps10p domain

(Quistgaard et al., 2009), also abolished GDNF binding to SorLA

in Biacore experiments (Figure S1B). The SorLA-GDNF interac-

tion was further confirmed in HEK293 cells transfected with an

endocytosis-deficient SorLA mutant where the binding of 125I-

GDNF (100 pM) was displaced by increasing concentrations of

unlabelled GDNF (Figure S1C). The combined data demonstrate

that the SorLA Vps10p domain specifically and selectively binds

to the N-terminal region of GDNF.

SorLA and GFRa1 Direct GDNF to Lysosomes
SorLA rapidly traffics from the cell surface to endosomes (Niel-

sen et al., 2007). Thus, to study SorLA-mediated GDNF endocy-

tosis and how this was affected by the presence of the GDNF

signaling receptors, we used HEK293 cells transfected with

combinations of SorLA, GFRa1, and RET. Cells were incubated

with GDNF (3 nM) for 2 hr on ice to allow cell surface binding
C

before changing to 37�C medium without GDNF to commence

internalization for 30min. Analysis using confocal microscopy re-

vealed GDNF in vesicular structures of SorLA cells, whereas faint

spots of GDNF lined the surface of cells transfected with RET or

empty vector (Figure 1E). In contrast, GFRa1 or GFRa1/RET-

expressing cells showed intense GDNF staining lining the

plasmamembrane, but no endocytosiswas apparent (Figure 1E).

GDNF endocytosis by RET/SorLA cells was comparable to

SorLA alone (Figure 1E). Strikingly, coexpression of SorLA and

GFRa1 resulted in a dramatic increase in GDNF endocytosis

independent of RET (Figures 1E and S1D). In fact, SorLA and

GFRa1 together resulted in detectable internalization at a 100-

fold lower GDNF concentration compared to SorLA alone

(Figures S1E and S1F), demonstrating a cooperative effect.

Furthermore, GDNF surface staining was reduced by 75%

during 45 min in SorLA/GFRa1 cells compared to only �30%

in GFRa1 cells (Figures S2A and S2B).

Interestingly, SorLA cells metabolized GDNF from the culture

medium to a much greater extent than mock-transfected cells

(Figure S2C), and 125I-GDNF bound to the surface of cells

expressing SorLA, decreased from 3,214 ± 450 to 1,046 ± 72

cpm during 60 min, and was accompanied by an equivalent

accumulation of nonprecipitable radioactivity released into the

culture medium, possibly derived from degraded GDNF (Fig-

ure S2D). Importantly, GDNF did not remain associated with

SorLA and GFRa1 but colocalized with the endosomal marker

EEA1 (Figure 1F), and the intensity of the GDNF staining

decreased over time (from 30 to 60 min) (Figures 1Fand 1G).

Lysosome inhibition by leupeptin and pepstatin (leu/pep) clearly

augmented GDNF immunoreactivity in structures of SorLA/

GFRa1 cells also positive for the lysosomal marker Lamp-1 (Fig-

ure 1G). In contrast, no change in GDNF staining upon leu/pep

treatment was evident in GFRa1 cells, where abundant GDNF

was associated with the plasma membrane (Figure 1H). Taken

together, the data show that SorLA alone and in cooperation

with GFRa1 of the GFRa1-RET complex binds extracellular

GDNF and targets it for lysosomal degradation.

GFRa1 and SorLA Forms GDNF Sorting Complex
To study how GFRa1 delivers GDNF to SorLA, we probed for

a receptor-receptor complex by coimmunoprecipitation (co-

IP). Indeed, SorLA and GFRa1 co-IPed both in the presence

and absence of GDNF (Figure 2A), whereas we were unable

to co-IP SorLA and RET (data not shown). The SorLA/GFRa1

interaction was direct as assessed using Biacore (Kd = 6 nM)

(Figures 2B and S3A), whereas we observed no binding between

the SorLA and RET (Figure 2B). GFRa1 binding was inhibited by

excess SorLA propeptide (Figure S3B), but, unlike for GDNF,

neurotensin did not affect the SorLA-GFRa1 interaction (Fig-

ure S3C). We speculated whether SorLA-GFRa1-GDNF might

interact simultaneously and tested this in a Biacore experiment

where immobilized SorLA was first saturated with GDNF and

subsequently tested for its ability to bind GFRa1. No reduction

in the affinity for GFRa1 was observed for the SorLA-GDNF com-

plex compared to SorLA alone (Figure S3D). In fact, picomolar

GDNF concentrations increased SorLA/GFRa1 co-IP, indicating

the potential formation of a ternary complex (Figure S3E). Finally,

by crosslinking followed by sequential co-IP of GDNF and
ell Reports 3, 186–199, January 31, 2013 ª2013 The Authors 187



Figure 1. SorLA and GFRa1 Direct GDNF to Lysosomes

(A) GDNF binds SorLA in a concentration-dependent manner as shown using Biacore. Kd = 3 nM.

(B) Binding to SorLA is selective for GDNF and not observed for artemin, neurturin, or persephin (20 nM).

(C) Binding of proGDNF N-terminal fragments containing the proregion and first 38 amino acids (aa 20–115) from the mature GDNF fused to GST (200 nM) to

immobilized SorLA ECD. The binding site in GDNF is encompassed within the N-terminal 38 aa of mature GDNF. Numbering starts from the human GDNF signal

peptide. The aa 20–77 construct contains only the proregion of GDNF.

(D) The domain structure of SorLA and the related receptor sortilin is depicted. Vps10p, vacuolar protein sorting 10 protein; EGF, epidermal growth factor class

B-like domain; LA, LDL class A repeats; Fbn III, fibronectin type III repeats.

(E) Mock-transfected HEK293 cells or HEK293 cells transfected with combinations of SorLA, GFRa1, and RET as indicated were incubated with GDNF (3 nM) at

0�C for 2 hr on ice to allow surface binding but not internalization. Cells were subsequently changed to 37�C culture medium for 30 min. GDNF (green) and SorLA

(red) are visualized by IF. All images were obtained using the same laser power and microscope settings. Nuclei are stained using Hoechst. Scale bar, 10 mm.

n = 10 independent experiments with over 300 cells evaluated for each condition.

(legend continued on next page)
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Figure 2. SorLA and GFRa1 Form a GDNF

Sorting Complex

(A)SorLA interactsdirectlywithGFRa1asshownby

co-IP in transfected HEK293 cells ± GDNF (5 nM).

(B) Specific interaction of GFRa1 but not RET

extracellular domain (200 nM of either) with SorLA

as shown using Biacore.

(C) Surface-labeled GFRa1 (green) is endocytosed

in HEK293 cells coexpressing SorLA ± GDNF.

GFRa1 expressed alone is not endocytosed

during the course of the experiment. Scale bar,

10 mm. n = 10 independent experiments with over

300 cells evaluated for each condition.

(D) Quantification of the decrease in GFRa1

surface IF over time in GFRa1- or GFRa1/SorLA-

expressing HEK293 cells ± GDNF (*p = 0.005,

**p = 3E-5). Error bars indicate SEM.

(E) Turnover of GFRa1 in transfected HEK293 ±

SorLA was assessed by metabolic labeling fol-

lowed by pulse-chase analysis and subsequent IP.

(F)SorLAandGFRa1colocalizewith the trans-Golgi

marker TGN46 in HEK293/SorLA/GFRa1 cells.

(G) Immunoelectron microscopy showing colocal-

ization of SorLA and GFRa1 in endosomes (E) and

multivesicular bodies (MVB) visualized by staining

of HEK293/SorLA/GFRa1 cells with first mouse

anti-SorLAandgoat anti-GFRa1, andsubsequently

with gold-particle-coupled donkey anti-mouse

(10 nm particle diameter) and donkey anti-goat

(6 nm particle diameter) secondary antibodies.

MVBsaremagnified in right imagesandwhitearrow

heads indicate 6 nm particles close to 10 nm par-

ticles, representing colocalized SorLA and GFRa1.

See also Figures S3 and S4.
GFRa1 as described in Figure S3F, SorLA was pulled down

specifically as part of a ternary SorLA/GFRa1/GDNF complex,

confirming its existence.
(F) GDNF (green) (3 nM) internalized by HEK293/SorLA/GFRa1 cells for the indicated time periods displays

(red) but instead colocalize with the endosomal marker EEA1 (red). All images were acquired at the same lase

decrease in GDNF vesicular staining over time.

(G and H) Inhibition of lysosomal proteinases using leupeptin and pepstatin (leu/pep) prevents degradation o

SorLA/GFRa1 as visualized by the increase of GDNF IF (green) colocalizing with Lamp-1 (red). In contrast, i

membrane was observed in HEK293/GFRa1 cells independent of treatment. Experiments in (F) and (G) we

evaluated for each condition. Representative images are shown. Scale bar, 10 mm. All images were obtained w

See also Figures S1 and S2.

Cell Reports 3, 186–199
SorLA Sorts GFRa1 from the Cell
Surface to the TGN
To monitor SorLA-mediated sorting of

GFRa1, we labeled surface receptor with

antibodies. In the presence of SorLA, the

majority of GFRa1 accumulated in para-

nuclear compartments within 45 min,

whereas no endocytosis was observed

for GFRa1 alone (Figures 2C and 2D). To

determine if SorLA destines GFRa1 for

lysosomal degradation, we studied its

turnover by metabolic labeling of cells ex-

pressing GFRa1 alone or coexpressing

SorLA. Surprisingly, SorLA appeared to
prolong GFRa1 half-life, ruling out lysosomal sorting (Figures

2E, S3G, and S3H). GFRa1 alone localized mainly to the plasma

membrane, but coexpression with SorLA shifted a substantial
only modest colocalization with SorLA and GFRa1

r power and microscope settings and illustrate the

f GDNF (3 nM, 60 min) in HEK293 cells expressing

ntense GDNF staining associated with the plasma

re performed six times and at least 200 cells were

ith the same laser power andmicroscope settings.
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Figure 3. The SorLA/GFRa1 Complex Mediates RET Endocytosis

(A) Co-IP of RET together with GFRa1 ± SorLA from transfected HEK293 cells (left part of figure). Co-IP of SorLA together with GFRa1 ± RET (right part of figure).

n = 4 independent experiments.

(B and C) HEK293 cells transfected with combinations of RET, SorLA, GFRa1, or empty vector were incubated on ice for 2 hr in medium containing antibodies

against the RET extracellular domain (0.1 mg/ml) and subsequently 0 or 30min at 37�C in normal culturemedium. Scale bar, 10 mm. n = 4 independent experiments

with over 100 cells evaluated for each condition.

(D) RET (green) is internalized into EEA1- (red) positive endosomes by the SorLA/GFRa1 complex ± GDNF (3 nM). Scale bar, 10 mm.

(E) To separate the subcellular structures that contain endogenous RET, we performed a two-step sucrose gradient centrifugation of a postnuclear supernatant

preparation of SY5Y or SY5Y/SorLA cells. We first fractioned cells by velocity gradient centrifugation and assessed the presence of SorLA and RET in collected

fractions by western blotting as shown in Figure S5B. Fractions 7–9, enriched in both SorLA and RET, were pooled and further fractioned by an equilibrium

gradient centrifugation, and collected fractions were analyzed again as indicated in the figure. n = 3 independent experiments.

(F) The effect of SorLA overexpression (SY5Y/SorLA) on turnover of endogenous RET in SY5Y neuroblastoma cells was assessed by metabolic labeling followed

by pulse-chase analysis and subsequent IP of RET. n = 4 independent experiments.

See also Figure S5.
fraction of GFRa1 to vesicular structures (Figure S3I). SorLA and

GFRa1 partially colocalized with the TGN marker TGN46 (Fig-

ure 2F) and were also found together in endosomes and multive-

sicular bodies as shown by immune electron microscopy (Fig-

ure 2G). Although SorLA does not bind the additional GFLs, it is

tempting to speculate that it may sort neurturin coreceptor

(GFRa2), artemin coreceptor (GFRa3) and persephin coreceptor

(GFRa4) in a similarmanner toGFRa1. Indeed, SorLAwas specif-

ically pulled down by co-IP with the individual GFRas (Fig-

ure S4A). Furthermore, SorLA directed GFRa2 and -4 from the

cell surface into vesicles (Figures S4B–S4D), suggesting that it

may function as a general GFRa sorting receptor.
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SorLA/GFRa1 Mediates RET Endocytosis
We next tested if SorLA affects RET/GFRa1 complex formation.

Intriguingly, SorLA did not inhibit pulldown of RET and GFRa1;

rather, it appeared to increase their interaction slightly (Fig-

ure 3A). Of note, the presence of SorLA mainly induced co-IP

of GFRa1 with the lower molecular weight form of RET, likely

representing immature intracellular receptor. Similarly, co-IP of

SorLA by GFRa1 was also somewhat increased by RET despite

the fact that we were unable to demonstrate an interaction

between SorLA and RET (Figure 3A and data not shown). This

was not altered by the presence of GDNF (3 nM) (data not

shown). To study if RET trafficking is affected by SorLA, we



Figure 4. SorLA Inhibits GDNF-Induced

Neurotrophic Activity

(A) SY5Y cells stimulated with GDNF (3 nM, 15min)

following 2 hr preincubation with the indicated

antibodies (10 mg/ml). Representative immuno-

blots of phosphorylated Erk (pErk) and phosphor-

ylated Akt (pAkt) and total levels of Erk and Akt

proteins. n = 3 independent experiments.

(B) The presence of goat anti-GDNF (10 mg/ml) in

the culture medium of serum-depleted SY5Y cells

for 3 days reduces their survival compared to the

presence of unspecific goat antibodies. *p = 0.04

(n = 4).

(C) Addition of exogenous GDNF (3 nM) and inhi-

bition of endogenous SorLA by its propeptide

(SorLApro, 1 mM) increases SY5Y cell survival

upon serum depletion. *p = 6E-5 compared to

the control. **p = 0.001 compared to the control.

***p = 1E-5 compared to SorLApro (n = 4).

(D) SorLA overexpression in SY5Y/SorLA cells

reduces survival upon serum depletion com-

pared to mock-transfected SY5Y cells. *p = 0.008

(n = 4).

(E) GDNF binding and uptake in SY5Y cells

and SY5Y/SorLA cells for 30 min at 37�C fol-

lowing incubation in GDNF-containing medium

(3 nM) for 2 hr on ice. n = 3 independent ex-

periments with over 100 cells evaluated. Scale

bar, 10 mm.

(F) Inhibition of SorLA by its propeptide (SorLApro, 1 mM) increases proliferation of SY5Y cells (*p = 9E-4, **p = 4E-6, n = 4). GST alone (1 mM) was added to

SY5Y cells in the control experiment.

(G) Overexpression of SorLA inhibits GDNF-induced (3 nM) but not all trans-retinoic acid (RA)-induced (10 mM) neurite outgrowth in SY5Y cells. (*p = 0.03,

**p = 0.04, n = 5).

Error bars indicate SEM. See also Figure S5.
labeled surface RET with antibodies and studied its internaliza-

tion. At 30 min the vast majority of labeled RET remained at

the surface of cells expressing RET alone, or RET together with

GFRa1 or SorLA (Figures 3B and 3C). However, in SorLA/

GFRa1/RET cells, RET was directed to EEA1-positive endo-

somes (Figures 3C and 3D), an observation that was indepen-

dent of GDNF (Figure 3D, left panel). We speculated if the

SorLA/GFRa1 complex sorts endogenous RET and tested this

in SY5Y cells, which express all three receptors endogenously,

and in SY5Y cells overexpressing SorLA (SY5Y/SorLA) (Fig-

ure S5A). To separate intracellular structures, we employed a

two step gradient centrifugation protocol (Nielsen et al., 2007)

and analyzed fractions by western blotting (Figures 3E and

S5B). This experiment revealed amarked shift in RET localization

in SY5Y/SorLA cells to fractions of higher density also enriched

in SorLA (Figure 3E), strongly indicating that RET undergoes

intracellular trafficking together with SorLA/GFRa1. Yet, such

sorting does not affect RET degradation as newly synthesized

receptor rapidly disappeared independent of SorLA overexpres-

sion (Figure 3F).

SorLA Inhibits GDNF-Induced Neurotrophic Activity
As SorLA targets all three components of the extracellular GDNF

signaling machinery, we tested its impact on the activation of

intracellular cascades. We treated SY5Y cells for 2 hr with SorLA

antibodies that block GDNF/GFRa1 endocytosis (Figure S5C)

and observed a marked increase in GDNF-induced Erk and Akt
C

phosphorylation (3 nM, 15 min), suggesting an inhibitory role

of endogenous SorLA (Figure 4A). Serum-depleted SY5Y cells

depend on autocrine GDNF stimulation as anti-GDNF reduced

survival by �35% (Figure 4B). In contrast, survival was potenti-

ated by the addition of exogenous GDNF (Figure 4C). The SorLA

propeptide (SorLApro) can be used as a SorLA antagonist as

illustrated in Figures S5D and S5E. Accordingly, SorLApro

induced survival as efficiently as exogenously added GDNF,

and their combination was even more effective (Figure 4C). In

contrast, SorLA overexpression (SY5Y/SorLA) reduced survival

to a similar extent as anti-GDNF (Figure 4D). Notably, SY5Y/

SorLA cells also displayed markedly increased clearance of

surface bound GDNF (3 nM) during 30 min compared to mock-

transfected SY5Y cells (Figure 4E). GDNF-GFRa1-RET signaling

is further known to promote proliferation of SY5Y cells (Hirata

and Kiuchi, 2003), and in analogy the addition of SorLApro

markedly increased the number of cells/well after 24 hr (Fig-

ure 4F). Proliferation could not be potentiated further by addi-

tion of both GDNF and SorLA propeptide, suggesting that it

was already proceeding at its highest rate (data not shown).

Cell differentiation, e.g., neurite outgrowth is a third down-

stream effect of GDNF. Addition of GDNF to the culture medium

resulted in approximately 30% process-bearing SY5Y cells

(Figure 4G). However, SorLA overexpression blocked GDNF-

induced process outgrowth but did not significantly affect

outgrowth induced by retinoic acid (RA) that initiates a different

signaling cascade (Figure 4G). In summary, SorLA negatively
ell Reports 3, 186–199, January 31, 2013 ª2013 The Authors 191



modulates downstream effects of GDNF signaling likely by con-

trolling both GDNF levels and the subcellular distribution of

GFRa1-RET.

SorLA Controls GFRa1 Localization and GDNF Uptake in
Neurons
Using western blotting, we found SorLA expressed in all CNS

tissues analyzed (Figure 5A), and immunohistochemistry of

mouse brain sections revealed the presence of SorLA in distinct

neuronal vesicular structures as exemplified in the cortex (Fig-

ure 5B) but also in GFAP-positive glia (Figures S6A and S6B).

GFRa1 is highly expressed in the developing cortex and hippo-

campus where it acts independent of RET (Bespalov et al.,

2011; Ledda et al., 2007; Pozas and Ibáñez, 2005). In primary

hippocampal neurons, we detected high levels of endogenous

GFRa1 but not RET, and all neurons also expressed variable

levels of SorLA (Figure 5C and data not shown). Interestingly,

GFRa1 was markedly enriched in the initial segment of filaments

(Figure 5C). As SorLA-positive vesicles are abundant in the soma

and protrude gradually through the initial segment of filaments

(Figure 5C), we speculated if it might function here as sorting

hub for GFRa1 targeted for axons and dendrites. Indeed, such

GFRa1 enriched initial segments displayed much stronger sur-

face immunoreaction in neurons derived from SorLA knockout

(KO) mice (Figure 5D) albeit total GFRa1 levels were unaltered

in KO neurons compared to wild-type (WT) (Figure 5F). We there-

fore performed GFRa1 immunostainings of nonpermeabilized

neurons from both genotypes and quantified the relative inten-

sity of surface staining in the initial segments as illustrated in Fig-

ure 5D. Notably, lack of SorLA resulted in a marked increase in

surface GFRa1 in the soma and at the initial segment of filaments

(Figure 5E), showing that SorLA regulates GFRa1 subcellular

localization in neurons. We subsequently tested the ability of

hippocampal neurons to bind andmetabolize GDNF. Exogenous

GDNF (3 nM) avidly bound to the surface of neurons derived from

WT and KOmice upon incubation for 2 hr at 0�C (Figures 5G and

5H). Following 30 min incubation in 37�C culture medium, the

GDNF signal in the soma markedly decreased and was now

found in a few faint vesicles of WT neurons (Figure 5G). In con-

trast, GDNF remained associated with the surface of SorLA KO

neurons, suggesting that endogenous SorLA/GFRa1 complex

mediates its endocytosis (Figure 5H).

SorLA Regulates In Vivo GDNF Levels and GDNF-
Induced Survival of DA Neurons
The survival of midbrain dopaminergic (DA) neurons in culture

depends on exogenous GDNF in a RET-dependent manner, as

well as on a supporting layer of glial cells (Burke et al., 1998;

Lin et al., 1993). Interestingly, both glia and DA neurons were

found to express high levels of SorLA (Figures 6A–6C, S6A,

and S6B). Hence, SorLA might regulate DA survival by seques-

tering extracellular GDNF and altering the subcellular distribution

of its receptors. Accordingly, we found that when GFAP-positive

cortical glia were incubated with GDNF (3 nM), it accumulated

in vesicular structures within 15 min (Figures 6D and 6E). In

contrast, no GDNF internalization was observed in cells derived

from SorLA KOmice (Figure 6F). In addition, GFRa1 appeared to

be increased at the surface of DA neurons from SorLA KO
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compared to WT neurons where it was more pronounced in

vesicular structures (Figure 6G). We therefore cultured rat DA

neurons with anti-SorLA or unspecific immunoglobulin G (IgG)

in the culture medium. In the absence of GDNF, anti-SorLA did

not affect survival compared to the control (data not shown).

However, in the presence of GDNF (0.3 nM), SorLA inhibition

potentiated survival by nearly 50% (Figure 6H). Similarly, the

GDNF-induced survival of SorLA knockout DA neurons was

markedly increased compared to that of WT neurons (Figure 6I).

To determine if SorLA regulates the amount of GDNF available to

DA neurons in vivo, we first examined SorLA expression in the

adult DA system by immunohistochemistry. A clear SorLA stain-

ing was observed in vesicle-like structures in the soma of tyro-

sine hydroxylase (TH)-positive midbrain neurons, and also in

the surrounding cells (Figure 6J). In striatum, we observed abun-

dance of SorLA-expressing cells (Figure S6E), some of which

were also GFAP positive (Figure S6F). We next analyzed adult

striatal and midbrain homogenates for their content of GDNF

by ELISA and found it be highly elevated in KO mice compared

to WT (Figure 6K).

SorLA Deficiency Affects the DA System and
Anxiety-Related Behavior
We speculated that the absence of SorLA, and thus potentially

altered GDNF activity, might lead to abnormal functionality of

the DA system. The overall appearance of the midbrain DA sys-

tem of SorLA knockouts was normal compared to WT mice as

shown by TH staining (Figure S7A). Stereological counting

showed that the number ofmidbrain TH+ neurons in the substan-

tia nigra pars compacta (SNpc) and ventral tegmental area (VTA)

was unchanged in both young (5 weeks, n = 6 in each group) and

older (45 weeks, n = 3 in each group, data not shown) Sorl1�/�

mice compared to WT mice (Figures 7A and 7B). Also the length

density of TH+ nerve fiber protruding from theSNpcandVTA from

sections of 10-week-old mice was similar between genotypes

(Figures 7Cand7D). To assessDAconnectivity in thenigrostriatal

system, we performed unilateral intrastriatal injections of the

retrograde tracer cholera toxin b subunit (CTb). CTb-labeled

TH+ neurons in the SNpcwere then identified by double immuno-

fluorescence (IF) and counted. Remarkably, the number of CTb-

labeled DA neurons in knockouts was less than one-fourth of that

ofWTmice (Figures 7E, S7B, andS7C), showing that nigrostriatal

connectivity was severely perturbed. The reduction in nigros-

triatal connectivity was accompanied by approximately 50%

reduction in TH protein levels in striatum of SorLA knockouts as

assessed by western blotting (Figures 7F and 7G), and a slight

reduction in dopamine levels as measured by high-performance

liquid chromatography (HPLC) (Figures 7H and S7D–S7K).

The activity of midbrain DA neurons is instrumental in the

behavioral response to phychostimulants. We therefore tested

the role of SorLA in amphetamine-induced hyperlocomotion by

injecting WT and SorLA knockouts with either saline or amphet-

amine and monitoring their behavior in an open field. The loco-

motor activity of WT mice was increased approximately three

timesuponamphetamine (10mg/kg) administration and the aver-

age distance traveled during 40 min augmented from 58.28 ±

4.19m to 172.51 ± 19.88m (p = 2E-4). In contrast, saline-injected

KO mice were already hyperactive compared to WT controls



Figure 5. Neuronal Surface Level of GFRa1 Is Regulated by SorLA

(A) SorLA expression in the CNS of young (6 weeks) and old mice (96 weeks) shown in tissue homogenates analyzed by western blotting.

(B) Immunohistochemical staining for SorLA in cortical paraffin sections visualized using FastRed and counterstaining using hematoxylin. No immunoreaction

was observed in sections from SorLA KO (Sorl1�/�) mice. Eighteen-week-old mice were used.

(C) Confocal image of GFRa1 (green) and SorLA (red) in primary hippocampal neurons fromWTmice (11 DIV). Nuclear staining was obtained usingHoechst (blue).

Scale bar, 10 mm.

(D and E) Surface GFRa1 staining of nonpermeabilized hippocampal neurons (11 DIV) fromWT and SorLA KOmice.White boxes indicate areas of soma and initial

filaments where surface fluorescence was quantified from nonsaturated images using an optical slice of 7 mm of 94 WT and 109 KO neurons on six coverslips of

each genotype from three independent cultures. *p = 3E-6, **p = 7E-6.

(F) Western blot showing GFRa1 in hippocampal neuron lysates derived from WT and SorLA KO (11DIV). Control is lysate of HEK293 cells stably expressing

GFRa1.

(G and H) GDNF (3 nM) was allowed to bind to the surface of hippocampal neurons (11 DIV) of WT and Sorl1�/� mice for 2 hr on ice. Cells were subsequently

washed to remove unbound GDNF and incubated for 30min at 37�C to allow internalization. Scale bar, 10 mm. n = 3 independent experiments with over 200 cells

evaluated.

See also Figure S6.
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Figure 6. SorLA Reduces In Vivo GDNF

Levels and the Survival of DA Neurons in

Culture

(A) Confocal images of cultured midbrain TH-

positive neurons (red) derived from P0 rats and

grown on a layer of supporting cortical glial cells

for 7 DIV. SorLA (green) is expressed in both glia

and neurons. Scale bar, 10 mm.

(B–D) Primary cultures of mouse cortical glial cells

stained with GFAP (red) display faint immuno-

reaction for endogenousGDNF (green) andGFRa1

(green, Figure S6C) but strong staining for SorLA

(green). Nuclei were stained using Hoechst (blue).

Cells from the Sorl1�/� mice are included as

control for the specificity of the SorLA antibody.

(E and F) GDNF (green, 5 nM, 15 min incubation)

is internalized by cortical glial cells from WT but

not from Sorl1�/� mice as exemplified using

GFAP-positive glia (red). These cells express some

GFRa1 (Figure S6C). Representative examples

of GDNF-containing vesicular structures are indi-

cated by white arrow heads. n = 3 independent

experiments with over 200 cells evaluated.

(G) Localization of GFRa1(red) in midbrain DA

neurons (4 DIV) identified by TH staining (red). In

the right images, white arrows indicate GFRa1

localized in vesicular structures in soma of a WT

neuron, and surface localized GFRa1 in a KO

neuron.

(H) Survival of primary rat DA neurons (7 DIV)

requires GDNF (0.3 nM) and is enhanced by anti-

SorLA but not by control IgG (10 mg/ml) (p = 0.02,

n = 7).

(I) GDNF-induced survival of WT and KO DA

neurons (4 DIV). TH+ neurons were counted on 14

coverslips of each genotype in three independent

cultures. The survival of SorLA KO DA neurons

stimulated with GDNF was 346% ± 28% of

the unstimulated control, while GDNF-induced

survival in WT neurons was only 194% ± 15% of

the control (*p = 4E-4).

(J) IF on midbrain cryosections showing the pres-

ence of SorLA (green) in TH-positive neurons (red)

of substantia nigra and surrounding glial cells in

16-week-old WT mice but not in SorLA knockouts

of the same age.

(K) GDNF levels determined by ELISA in tissue

homogenates from WT and Sorl1�/� mice. GDNF

is increased in midbrain and striatum of KO

animals (p = 0.01, n = 3; each n comprising a pool

of three 12- to 16-week-old animals).

Error bars indicate SEM. See also Figure S6.
(p = 0.006) and traveled a distance of approximately 108.62 ±

14.52 m, but no increase was observed following injection of

amphetamine (104.33±6.76m) (Figures7I–7J), strongly suggest-

ing impaired DA functionality in SorLA KOmice. The pronounced

hyperactivity of saline-treated knockouts led us to study their

anxiety-related behavior. In the elevated plus maze, knockouts

displayed markedly reduced anxiety levels evidenced by more

entries and increased time spent in the open arms of the maze

compared to controls (Figures 7K–7M). In striking contrast,

Gdnf+/� mice displayed markedly increased anxiety character-
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ized by reduced entries and time in the open arms (Figures 7N

and 7O). The combined data show that SorLA is critical for DA

function and anxiety-related behavior. Previous studies have

shown thatSorLAaffectsprocessingof amyloidprecursor protein

(APP) (Andersen et al., 2005) and sorting of lipoprotein lipase

(LpL) to lysosomes (Klinger et al., 2011). However, neither APP

nor LpL has been implicated in DA function so far. It is therefore

tempting to speculate that the impaired DA function in SorLA

KO is mainly caused by altered activity of GDNF and potentially

of other GFLs.



DISCUSSION

We here identify SorLA as a sorting receptor for GDNF and

GFRa1 that traffics a ternary SorLA/GFRa1/GDNF protein

complex from the cell surface to endosomal compartments,

thereby mediating uptake and clearance of extracellular GDNF

as well as redistribution of the GFRa1 receptor pool. The

SorLA/GFRa1 complex further targets RET for endocytosis inde-

pendent of GDNF, thereby altering its subcellular distribution and

signaling. Thus, SorLA represents an example of a transmem-

brane protein that actively mediates trafficking of complexes

of a neurotrophic factor and its receptors. The SorLA/GFRa1

complex is most likely stable once formed, as the affinity is

unusually high for a receptor-receptor interaction (Kd = 6 nM)

considering the restricted diffusion in the cell membrane. For

comparison, this affinity is approximately 5- to 30-fold higher

than what has been reported for Eph-ephrin interactions (Hima-

nen et al., 2004) and at least 70-fold higher than for neurexin-

neuroligin binding in Biacore experiments (Koehnke et al.,

2010). As GFRa1 itself has no cytosolic link to the intracellular

sorting machinery, the docking of the SorLA tail to the adaptors

AP-1 or the retromer complex (Nielsen et al., 2007) also results in

retraction of GFRa1 from late endosomes, subsequent return

to the trans-Golgi and then re-exit to the cell surface for another

round of GDNF capture. The physiological role of SorLA/GFRa1-

mediated trafficking of RET is unclear, but, in exerting its neuro-

trophic function, the RET/GFRa1/GDNF complex is well known

to undergo internalization and retrograde transport from axon

terminals to the soma. This is unlikely to involve SorLA, which

is largely absent from nerve endings (Klinger et al., 2011), and

because the SorLA/GFRa1-mediated RET endocytosis is inde-

pendent of GDNF. However, it is evident, at least in overexpress-

ing cells, that the SorLA/GFRa1-mediated endocytosis of GDNF

and RET is quantitatively more important than internalization of

the RET/GFRa1/GDNF complex.

Through this mechanism, SorLA inhibits downstream effects

of GDNF-induced signaling such as cell survival, proliferation,

and differentiation of neuronal cells, notably the survival of

DA neurons, by lysosomal targeting of GDNF, and by altering

GFRa1/RET subcellular distribution in both neurons and glia.

Future studies will be carried out to dissect how SorLA/GFRa

complexes affect sorting of neurturin, artemin, and persephin,

and what role SorLA might play in other neuronal systems that

depend on GFL activity. Finally, it would be important to address

whether SorLA differentially affects GDNF-induced RET sig-

naling versus RET-independent signaling.

GDNF has received massive attention as a potential treatment

for Parkinson’s disease due to its ability to protect and repair

lesioned nigrostriatal pathway in vivo, but only very little is known

about its role in the intact DA system. In both animal models of

neurotoxicity and human patients, GDNF has been found to

initially potentiate the DA system through increasing TH mRNA

and protein levels, dopamine synthesis, and uptake, and by

enhancing DA target innervation. However, long-lasting overex-

pression of GDNF in rats with lesioned nigrostriatal system led to

downregulation of TH. Similarly, long-term GDNF overexpres-

sion in the striatum of rats with intact nigrostriatal pathway led

to compensatory downregulation of TH with no effect on dopa-
C

mine levels (Georgievska et al., 2002, 2004; Rosenblad et al.,

2003) while another study reported reductions in both striatal

TH and dopamine (Sajadi et al., 2005). These observations

have been proposed to reflect compensatory effects of in-

creased GDNF actions on the DA synapse and at the level of

TH expression (Georgievska et al., 2004; Rosenblad et al.,

2003). Contrary, dopamine levels are normal in the striatum

and even increased in the nucleus accumbens of Gdnf+/� mice

compared to their control littermates (Gerlai et al., 2001).

In the present study, we find that SorLA deficiency results in

increased in vivo levels of GDNF that, as may be expected

from the above, translates into reduced striatal TH albeit unal-

tered number of TH+ neurons in the midbrain and normal nigral

fiber length in SorLA KO mice. Increased GDNF activity in the

VTA or nucleus accumbens has been reported to diminish the

behavioral response to drugs of abuse (Carnicella and Ron,

2009). Conversely, infusion of GDNF inhibitory antibodies into

the VTA or lack of one GDNF allele in Gdnf+/� mice increases

the drug response (Messer et al., 2000). Intriguingly, SorLA

knockouts display completely blunted response to amphet-

amine, which is most likely explained by a dramatic reduction

in nigrostriatal connectivity as determined by retrograde tracing.

Such reduced sensitivity to amphetamine is a characteristic of

the dopamine transporter (DAT) knockout (Giros et al., 1996)

andmice lacking a-synuclein (Abeliovich et al., 2000), bothmole-

cules involved in DA synaptic function. Blunted response to

amphetamine has also been reported in mice transgenic for

molecules involved in shaping DA connectivity such as the

netrin-1-receptor-deficient (Grant et al., 2007) or EphA5-overex-

pressing mice (Sieber et al., 2004). The insensitivity toward

amphetamine of SorLA knockouts stands somewhat in contrast

to the previously reported increased response to amphetamine

4 days after a single dose of GDNF or neurturin into the striatum

of mice (Horger et al., 1998). However, the SorLA KO phenotype

may instead reflect an adaptive response to a long-term increase

in GFL activity. SorLA KO mice were further characterized by

marked hyperactivity and reduced anxiety levels, in striking

contrast to mice lacking one GDNF allele, suggesting that the

two could operate together to regulate anxiety-related behavior.

This is interesting, as epigenetic regulation of GDNF expression

was recently proposed to affect susceptibility to stressful events

with its repression correlating with increased anxiety (Uchida

et al., 2011). Thus, SorLA KO animals exhibit behavioral traits

that may model symptoms of psychiatric disorders, in particular,

ADHD, and further studies should validate the potential of

SorLA-deficient mice as an animal model of ADHD. Interestingly,

components of the GDNF system show no genetic associa-

tion with the development of neurodegenerative diseases, but

linkage has been suggested to ADHD, schizophrenia, and other

neuropsychiatric disorders related to dysfunction of the DA

system (Michelato et al., 2004; Souza et al., 2010; Syed et al.,

2007).

We conclude that the interaction among SorLA, GFRa1,

and GDNF is a key regulatory element in the GDNF signaling

through GFRa1-RET. Our results also suggest that SorLA is

a potential target for the treatment of pathological conditions

related to the DA system such as drug abuse and Parkinson’s

disease.
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Figure 7. SorLA Affects DA Function and Behavior

(A andB) Number of TH+ neurons is unaltered in the VTA and SNpc ofWT andSorl1�/�mice as determined by stereological counting (n = 6 of each group, 5-week-

old mice).

(C and D) Normal fiber length density in VTA and SNpc as estimated using global spatial sampling of isotropic virtual planes in thick arbitrarily oriented sections

stained with anti-TH and visualized using DAB (n = 6 of each group, 10-week-old mice).

(E) Retrograde labeling of SNpc TH+ neurons by striatal injection of cholera toxin b subunit (CTb) and subsequently stereological counting of SNpc neurons

positive for both TH and CTb as visualized by double IF. WT (n = 3) and Sorl1�/�.(n = 4) mice were 10 weeks old. *p = 0.02.

(F and G) Reduced striatal TH levels in SorLA KO mice as assessed by western blotting and quantified relative to b-actin (n = 7, n = 5, respectively, each n

comprising a pool of three 12- to 16-week-old animals). p = 0.01.

(H) Dopamine levels in the striatum of Sorl1�/� mice measured using HPLC. p = 0.09, n = 7 and n = 10 for wild-type and knockouts (12–16 weeks old),

respectively.

(I) Representative track plots of WT (n = 12) and Sorl1�/� mice (n = 11) during 40 min in the open field following injection of saline or amphetamine

(10 mg/kg).

(J) Quantification of the distance traveled following the injection of saline or amphetamine byWT (n = 6 and n = 6, respectively) and SorLA KOmice (n = 5 and n = 6,

respectively). *p = 2E-4. The activity of saline treated knockouts was also significantly higher than WT (p = 0.006). Mice were 12–16 weeks old.

(K) Representative track plots of WT and Sorl1�/� mice during 10 min in the elevated plus maze. Note that while WT mice are most active in the bottom of the

closed arms, knockouts display higher preference toward the open arms.

(legend continued on next page)
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EXPERIMENTAL PROCEDURES

Biacore

Biacore was performed as described (Jacobsen et al., 2001). Binding was ex-

pressed in relative response units (RUs), the difference in response between

the immobilized protein flow cell and the corresponding control flow cell.

Kinetic parameters were determined using BIAevaluation 4.1.

Internalization Assay

Cells were cultured on poly-L-lysine coated coverslips and incubated with

cold medium containing GDNF (3 nM), anti-GFRa1 (0.1 mg/ml), or anti-RET

(0.1 mg/ml) for 2 hr on ice. The culture medium was then changed to 37�C
normal medium and at specific time points, and the cells were fixed in 4%

paraformaldehyde (PFA) (pH 7.4) and permeabilized with 0.1% Triton X-100

unless indicated otherwise. Internalized ligand and subcellular markers were

subsequently visualized using IF on a LSM 710 (Carl Zeiss). In different exper-

iments, cells were incubated with GDNF added to 37�C medium for defined

time periods. Internalization was quantified from nonsaturated immunofluores-

cent images using ImageJ. Regions of interest were randomly selected along

the plasma membrane of at least 120 cells for each time point. Inhibition of

lysosomal proteinases was achieved by adding fresh medium containing leu-

peptin and pepstatin (50 mg/ml, Sigma-Aldrich) every 6 hr, starting 24 hr before

the experiments.

Metabolic Labeling

Transfected HEK293 or SY5Y cells were labeled using �200 mCi/ml L-[35S]-

cysteine and L-[35S]-methionine (Pro-mix; GE Healthcare) in medium without

methionine and cysteine in the presence of Brefeldin A (Pierce). After 4 hr,

the cells were washed and changed to normal culture medium, and newly

synthesized GFRa1 or RET were chased for specific time periods. GFRa1 or

RET was subsequently immunoprecipitated from cell lysates, separated by

SDS-PAGE, and visualized using phosphoimaging.

DA Cultures

Cultures of DA neuronswere prepared from themidbrain of P0 rats ormice and

grown on a layer of cortical glial cells as described (Burke et al., 1998). Culture

medium was supplemented with 0.3 nM GDNF and changed every 3 days.

The effect of endogenous SorLA in rat DA neurons was assessed by adding

10 mg/ml SorLA antibodies (rabbit anti-human SorLA) or control antibodies

to themedium (rabbit IgG, R&D Systems). The number of surviving DA neurons

was counted at 7 DIV (for rats) or at 4 DIV (for mice) after TH staining.

Behavior

Behavioral tests were performed during the light phase (9 a.m. to 4 p.m.) Mice

were tested for anxiety levels in an elevated plusmaze essentially as described

(Chen et al., 2006). In the open-field test, wild-type and Sorl1�/� mice were

administered amphetamine (10 mg/kg) or saline by intraperitoneal (i.p.) injec-

tion, and placed in the corner of a (40 3 40 3 35 cm) clear Plexiglas arena

and their activity was recorded over a 40 min session and analyzed using

the Any-maze tracking software.

Animals

The SorLA KO mouse was first described in Andersen et al. (2005) and has

been backcrossed for ten generations into C57/BL6J. Behavioral studies

were done with the backcrossed homozygous mice compared to the same

C57/BL6J substrain that was used for backcrossing. The behavioral studies

have subsequently been recapitulated using KO andWToffspring from hetero-

zygous breedings. Gdnf+/+ and Gdnf+/� littermates (Pichel et al., 1996) were

obtained by heterozygous breeding using a GDNF KO line that has been back-

crossed for five generations into C57/BL6J. Male mice were used for all exper-
(L and M) Sorl1�/� mice (n = 12) show more entries (p = 0.01) and spend increase

control mice (n = 9). Mice were 12–16 weeks old.

(N and O) Gdnf+/� mice (n = 4) show fewer entries (p = 0.05) and reduced time

littermates (n = 7). Mice were 11 weeks old.

Error bars indicate SEM. See also Figure S7.

C

iments shown, but similar results were obtained using both genders (data not

shown). Animal experiments were performed according to institutional and

national regulations.

For further details, please see the Extended Experimental Procedures.
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