2,186 research outputs found
Solar-like oscillations in a metal-poor globular cluster with the HST
We present analyses of variability in the red giant stars in the metal-poor
globular cluster NGC6397, based on data obtained with the Hubble Space
Telescope. We use an non-standard data reduction approach to turn a 23-day
observing run originally aimed at imaging the white dwarf population, into
time-series photometry of the cluster's highly saturated red giant stars. With
this technique we obtain noise levels in the final power spectra down to 50
parts per million, which allows us to search for low amplitude solar-like
oscillations. We compare the observed excess power seen in the power spectra
with estimates of the typical frequency range, frequency spacing and amplitude
from scaling the solar oscillations. We see evidence that the detected
variability is consistent with solar-like oscillations in at least one and
perhaps up to four stars. With metallicities two orders of magnitude lower than
of the Sun, these stars present so far the best evidence of solar-like
oscillations in such a low metallicity environment.Comment: 7 pages, 6 figures, accepted by Ap
Oscillations in Arcturus from WIRE photometry
Observations of the red giant Arcturus (Alpha Boo) obtained with the star
tracker on the Wide Field Infrared Explorer (WIRE) satellite during a baseline
of 19 successive days in 2000 July-August are analysed. The amplitude spectrum
has a significant excess of power at low-frequencies. The highest peak is at
about 4.1 micro-Hz (2.8 d), which is in agreement with previous ground-based
radial velocity studies. The variability of Arcturus can be explained by sound
waves, but it is not clear whether these are coherent p-mode oscillations or a
single mode with a short life-time.Comment: 6 pages, 1 Latex file, 4 .eps figures, 2 .sty files, ApJL, 591, L151
See erratum (astro-ph/0308424
Evidence for Granulation and Oscillations in Procyon from Photometry with the WIRE satellite
We report evidence for the granulation signal in the star Procyon A, based on
two photometric time series from the star tracker on the WIRE satellite. The
power spectra show evidence of excess power around 1 milliHz, consistent with
the detection of p-modes reported from radial velocity measurements. We see a
significant increase in the noise level below 3 milliHz, which we interpret as
the granulation signal. We have made a large set of numerical simulations to
constrain the amplitude and timescale of the granulation signal and the
amplitude of the oscillations. We find that the timescale for granulation is
T(gran) = 750(200) s, the granulation amplitude is 1.8(0.3) times solar, and
the amplitude of the p-modes is 8(3) ppm. We found the distribution of peak
heights in the observed power spectra to be consistent with that expected from
p-mode oscillations. However, the quality of the data is not sufficient to
measure the large separation or detect a comb-like structure, as seen in the
p-modes of the Sun. Comparison with the recent negative result from the MOST
satellite reveal that the MOST data must have an additional noise source that
prevented the detection of oscillations.Comment: 23 pages, 12 figures, submitted to ApJ; v2 revisions: one reference
corrected and a comment in Figure 7 correcte
Solar-like oscillations in the G9.5 subgiant beta Aquilae
An interesting asteroseismic target is the G9.5 IV solar-like star beta Aql.
This is an ideal target for asteroseismic investigations, because precise
astrometric measurements are available from Hipparcos that greatly help in
constraining the theoretical interpretation of the results. The star was
observed during six nights in August 2009 by means of the high-resolution
\'echelle spectrograph SARG operating with the TNG 3.58 m Italian telescope on
the Canary Islands, exploiting the iodine cell technique. We present the result
and the detailed analysis of high-precision radial velocity measurements, where
the possibility of detecting time individual p-mode frequencies for the first
and deriving their corresponding asymptotic values will be discussed. The
time-series analysis carried out from \sim 800 collected spectra shows the
typical p-mode frequency pattern with a maximum centered at 416 \muHz. In the
frequency range 300 - 600 \muHz we identified for the first time six high S/N
(\gtrsim 3.5) modes with l = 0,2 and 11 < n < 16 and three possible candidates
for mixed modes (l = 1), although the p-mode identification for this type of
star appears to be quite difficult owing to a substantial presence of avoided
crossings. The large frequency separation and the surface term from the set of
identified modes by means of the asymptotic relation were derived for the first
time. Their values are \Delta \nu = 29.56 \pm 0.10 \muHz and \epsilon = 1.29
\pm 0.04, consistent with expectations. The most likely value for the small
separation is \delta\nu_{02} = 2.55 \pm 0.71 \muHz.Comment: 8 pages, 8 figures, 3 tables, accepted by A&
Asteroseismology of the Transiting Exoplanet Host HD 17156 with HST FGS
Observations conducted with the Fine Guidance Sensor on Hubble Space
Telescope (HST) providing high cadence and precision time-series photometry
were obtained over 10 consecutive days in December 2008 on the host star of the
transiting exoplanet HD 17156b. During this time 10^12 photons (corrected for
detector deadtime) were collected in which a noise level of 163 parts per
million per 30 second sum resulted, thus providing excellent sensitivity to
detection of the analog of the solar 5-minute p-mode oscillations. For HD 17156
robust detection of p-modes supports determination of the stellar mean density
of 0.5301 +/- 0.0044 g/cm^3 from a detailed fit to the observed frequencies of
modes of degree l = 0, 1, and 2. This is the first star for which direct
determination of the mean stellar density has been possible using both
asteroseismology and detailed analysis of a transiting planet light curve.
Using the density constraint from asteroseismology, and stellar evolution
modeling results in M_star = 1.285 +/- 0.026 solar, R_star = 1.507 +/- 0.012
solar, and a stellar age of 3.2 +/- 0.3 Gyr.Comment: Accepted by ApJ; 16 pages, 18 figure
Seismology of Procyon A: determination of mode frequencies, amplitudes, lifetimes, and granulation noise
The F5 IV-V star Procyon A (aCMi) was observed in January 2001 by means of
the high resolution spectrograph SARG operating with the TNG 3.5m Italian
telescope (Telescopio Nazionale Galileo) at Canary Islands, exploiting the
iodine cell technique. The time-series of about 950 spectra carried out during
6 observation nights and a preliminary data analysis were presented in Claudi
et al. 2005. These measurements showed a significant excess of power between
0.5 and 1.5 mHz, with ~ 1 m/s peak amplitude. Here we present a more detailed
analysis of the time-series, based on both radial velocity and line equivalent
width analyses. From the power spectrum we found a typical p-mode frequency
comb-like structure, identified with a good margin of certainty 11 frequencies
in the interval 0.5-1400 mHz of modes with l=0,1,2 and 7< n < 22, and
determined large and small frequency separations, Dn = 55.90 \pm 0.08 muHz and
dnu_02=7.1 \pm 1.3 muHz, respectively. The mean amplitude per mode (l=0,1) at
peak power results to be 0.45 \pm 0.07 m/s, twice larger than the solar one,
and the mode lifetime 2 \pm 0.4 d, that indicates a non-coherent, stochastic
source of mode excitation. Line equivalent width measurements do not show a
significant excess of power in the examined spectral region but allowed us to
infer an upper limit to the granulation noise.Comment: 10 pages, 15 figures, 4 tables. Accepted for publication in A&
Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+
We present a very efficient technique for solving the three-dimensional
time-dependent Schrodinger equation. Our method is applicable to a wide range
of problems where a fullly three-dimensional solution is required, i.e., to
cases where no symmetries exist that reduce the dimensionally of the problem.
Examples include arbitrarily oriented molecules in external fields and atoms
interacting with elliptically polarized light. We demonstrate that even in such
cases, the three-dimensional problem can be decomposed exactly into two
two-dimensional problems at the cost of introducing a trivial rotation
transformation. We supplement the theoretical framework with numerical results
on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure
Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments
For crucial tests between theory and experiment, ab initio close coupling
calculations are carried out for photoionization of O II, O III, O IV, O V. The
relativistic fine structure and resonance effects are studied using the
R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM)
approximation. Detailed comparison is made with high resolution experimental
measurements carried out in three different set-ups: Advanced Light Source at
Berkeley, and synchrotron radiation experiments at University of Aarhus and
University of Paris-Sud. The comparisons illustrate physical effects in
photoionization such as (i) fine structure, (ii) resolution, and (iii)
metastable components. Photoionization cross sections sigma{PI} of the ground
and a few low lying excited states of these ions obtained in the experimental
spectrum include combined features of these states. Theoretically calculated
resonances need to be resolved with extremely fine energy mesh for precise
comparison. In addition, prominent resonant features are observed in the
measured spectra from transitions allowed with relativistic fine structure, but
not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i)
2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and
2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels
of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found
that resonances in ground and metastable cross sections can be a diagnostic of
experimental beam composition, with potential ap plications to astrophysical
and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high
resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p
Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules
The yield of strong-field ionization, by a linearly polarized probe pulse, is
studied experimentally and theoretically, as a function of the relative
orientation between the laser field and the molecule. Experimentally, carbonyl
sulfide, benzonitrile and naphthalene molecules are aligned in one or three
dimensions before being singly ionized by a 30 fs laser pulse centered at 800
nm. Theoretically, we address the behaviour of these three molecules. We
consider the degree of alignment and orientation and model the angular
dependence of the total ionization yield by molecular tunneling theory
accounting for the Stark shift of the energy level of the ionizing orbital. For
naphthalene and benzonitrile the orientational dependence of the ionization
yield agrees well with the calculated results, in particular the observation
that ionization is maximized when the probe laser is polarized along the most
polarizable axis. For OCS the observation of maximum ionization yield when the
probe is perpendicular to the internuclear axis contrasts the theoretical
results.Comment: 14 pages, 4 figure
- …