181 research outputs found

    On-chip integrated nanowire device platform with controllable nanogap for manipulation, capturing, and electrical characterization of nanoparticles

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate nanowire (NW) device platforms on-chip integrated using electric-field-assisted self-assembly. This platform integrates from nanoprobes to microprobes, and conveniently allows for on-chip manipulation, capturing, and electrical characterization of nanoparticles (NPs). Synthesizing segmented (Au–Ag–Au) NWs and aligning them across predefined microelectrode arrays under ac electric field, we controllably form nanogaps between the self-aligned end (Au) segments by selectively removing the middle (Ag) segments. We precisely control and tune the size of this middle section for nanogap formation in the synthesis process. Using electric field across nanogaps between these nanoprobes, we capture NPs to electrically address and probe them at the nanoscale. This approach holds great promise for the construction of single NP devices with electrical nanoprobe contacts

    Numerical analysis of gas diffusion in drilled hollow–core photonic crystal fibres

    Get PDF
    Hollow-Core Photonic Crystal Fibres (HC-PCFs) have emerged as an area of interest for fibre-optic based distributed gas sensing. In order to allow the gas to enter the hollow core of the fibre, various techniques such as lateral drilled side holes have been investigated in the literature. However, it is essential to understand the mechanisms of gas flow in HC-PCFs with drilled side holes in order to determine the optimum design parameters of the sensor such as the size and spacing of drilled side holes. This study aims to analyse the gas flow behaviour and determine the response time of HC–PCFs with drilled side holes by developing and applying a numerical model based on gas diffusion in a microchannel. The model is validated against the results of two different experimental studies. The model is then applied to determine the response time is a function of the length, the number and spacing of side holes and the gas type (methane and acetylene). It is found that an inverse relationship exists between the effects of number and spacing of side holes on the response time and the optical loss, suggesting that an optimum design point exists

    High prevalence of respiratory symptoms among workers in the development section of a manually operated coal mine in a developing country: A cross sectional study

    Get PDF
    BACKGROUND: Few studies of miners have been carried out in African countries; most are from South Africa, where the working conditions are assumed to be better than in the rest of Africa. Several studies have focused on respiratory disorders among miners, but development workers responsible for creating underground road ways have not been studied explicitly. This is the first study assessing the associations between exposure to dust and quartz and respiratory symptoms among coal mine workers in a manually operated coal mine in Tanzania, focusing on development workers, as they have the highest exposure to coal dust. METHODS: A cross-sectional study was carried out among 250 production workers from a coal mine. Interviews were performed using modified standardized questionnaires to elicit information on occupational history, demographics, smoking habits and acute and chronic respiratory symptoms. The relationships between current dust exposure as well as cumulative respirable dust and quartz and symptoms were studied by group comparisons as well as logistic regression. RESULTS: Workers from the development group had the highest dust exposure, with arithmetic mean of 10.3 mg/m(3 )for current respirable dust and 1.268 mg/m(3 )for quartz. Analogous exposure results for mine workers were 0.66 mg/m(3 )and 0.03 mg/m(3), respectively; and for other development workers were 0.88 mg/m(3 )and 0.10 mg/m(3), respectively. The workers from the development section had significantly higher prevalence of the acute symptoms of dry cough (45.7%), breathlessness (34.8%) and blocked nose (23.9%). In addition, development workers had significantly more chronic symptoms of breathlessness (17.0%) than the mine workers (6.4%) and the other production workers (2.4%). The highest decile of cumulative exposure to respirable dust was significantly associated with cough (OR = 2.91, 95% CI 1.06, 7.97) as were cumulative exposure to quartz and cough (OR = 2.87, CI 1.05, 7.88), compared with the reference consisting of the group of workers with the lowest quartile of the respective cumulative exposure. CONCLUSION: The development workers in a coal mine had more acute and chronic respiratory symptoms than the mine and the other production workers. In addition, there was an association between high cumulative coal dust and respiratory symptoms

    High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies

    Get PDF
    Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community

    De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthropods are the most diverse animal phylum, but their genomic resources are relatively few. While the genome of the branchiopod <it>Daphnia pulex </it>is now available, no other large-scale crustacean genomic resources are available for comparison. In particular, genomic resources are lacking for the most tractable laboratory model of crustacean development, the amphipod <it>Parhyale hawaiensis</it>. Insight into shared and divergent characters of crustacean genomes will facilitate interpretation of future developmental, biomedical, and ecological research using crustacean models.</p> <p>Results</p> <p>To generate a transcriptome enriched for maternally provided and zygotically transcribed developmental genes, we created cDNA from ovaries and embryos of <it>P. hawaiensis</it>. Using 454 pyrosequencing, we sequenced over 1.1 billion bases of this cDNA, and assembled them <it>de novo </it>to create, to our knowledge, the second largest crustacean genomic resource to date. We found an unusually high proportion of C2H2 zinc finger-containing transcripts, as has also been reported for the genome of the pea aphid <it>Acyrthosiphon pisum</it>. Consistent with previous reports, we detected trans-spliced transcripts, but found that they did not noticeably impact transcriptome assembly. Our assembly products yielded 19,067 unique BLAST hits against <b>nr </b>(E-value cutoff e-10). These included over 400 predicted transcripts with significant similarity to <it>D. pulex </it>sequences but not to sequences of any other animal. Annotation of several hundred genes revealed <it>P. hawaiensis </it>homologues of genes involved in development, gametogenesis, and a majority of the members of six major conserved metazoan signaling pathways.</p> <p>Conclusions</p> <p>The amphipod <it>P. hawaiensis </it>has higher transcript complexity than known insect transcriptomes, and trans-splicing does not appear to be a major contributor to this complexity. We discuss the importance of a reliable comparative genomic framework within which to consider findings from new crustacean models such as <it>D. pulex </it>and <it>P. hawaiensis</it>, as well as the need for development of further substantial crustacean genomic resources.</p

    Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold

    Get PDF
    corecore