10 research outputs found

    Filaggriinin nollamutaatioiden hyödyllisyys atopian hoitovasteen ennusteelle: Havaintotutkimus suomalaisissa potilaissa

    Get PDF
    The contribution of filaggrin null mutations to predicting atopic dermatitis (AD) treatment response is not clear, nor have such mutations been studied in the Finnish population. This study tested the association of the 4 most prevalent European FLG null mutations, the 2 Finnish enriched FLG null mutations, the FLG 12-repeat allele, and 50 additional epidermal barrier gene variants, with risk of AD, disease severity, clinical features, risk of other atopic diseases, age of onset, and treatment response in 501 patients with AD and 1710 controls. AD, early-onset AD, palmar hyperlinearity, and asthma showed significant associations with the combined FLG null genotype. Disease severity and treatment response were independent of patient FLG status. Carrier frequencies of R501X, 2282del4, and S3247X were notably lower in Finns compared with reported frequencies in other populations. This data confirms FLG mutations as risk factors for AD in Finns, but also, questions their feasibility as biomarkers in predicting treatment response.The contribution of filaggrin null mutations to predicting atopic dermatitis (AD) treatment response is not clear, nor have such mutations been studied in the Finnish population. This study tested the association of the 4 most prevalent European FLG null mutations, the 2 Finnish enriched FLG null mutations, the FLG 12-repeat allele, and 50 additional epidermal barrier gene variants, with risk of AD, disease severity, clinical features, risk of other atopic diseases, age of onset, and treatment response in 501 patients with AD and 1,710 controls. AD, early-onset AD, palmar hyperlinearity, and asthma showed significant associations with the combined FLG null genotype. Disease severity and treatment response were independent of patient FLG status. Carrier frequencies of R501X, 2282del4, and S3247X were notably lower in Finns compared with reported frequencies in other populations. This data confirms FLG mutations as risk factors for AD in Finns, but also questions their feasibility as biomarkers in predicting treatment response.Peer reviewe

    Novel TMEM173 Mutation and the Role of Disease Modifying Alleles

    Get PDF
    Upon binding to pathogen or self-derived cytosolic nucleic acids cyclic GMP-AMP synthase (cGAS) triggers the production of cGAMP that further activates transmembrane protein STING. Upon activation STING translocates from ER via Golgi to vesicles. Monogenic STING gain-of-function mutations cause early-onset type I interferonopathy, with disease presentation ranging from fatal vasculopathy to mild chilblain lupus. Molecular mechanisms underlying the variable phenotype-genotype correlation are presently unclear. Here, we report a novel gain-of-function G207E STING mutation causing a distinct phenotype with alopecia, photosensitivity, thyroid dysfunction, and features of STING-associated vasculopathy with onset in infancy (SAVI), such as livedo reticularis, skin vasculitis, nasal septum perforation, facial erythema, and bacterial infections. Polymorphism in TMEM173 and IFIH1 showed variable penetrance in the affected family, implying contribution to varying phenotype spectrum. The G207E mutation constitutively activates inflammation-related pathways in vitro, and causes aberrant interferon signature and inflammasome activation in patient PBMCs. Treatment with Janus kinase 1 and 2 (JAK1/2) inhibitor baricitinib was beneficiary for a vasculitic ulcer, induced hair regrowth and improved overall well-being in one patient. Protein-protein interactions propose impaired cellular trafficking of G207E mutant. These findings reveal the molecular landscape of STING and propose common polymorphisms in TMEM173 and IFIH1 as likely modifiers of the phenotype.Peer reviewe

    Assessment of gene–disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA

    No full text
    International audienceAbstract Background Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. Results Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene–disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene–phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. Conclusions This work provides a detailed evidence-based view of the gene–disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene–phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ )
    corecore