21 research outputs found

    Chemical aspects of ocean acidification monitoring in the ICES marine area

    Full text link
    It is estimated that oceans absorb approximately a quarter of the total anthropogenic releases of carbon dioxide to the atmosphere each year. This is leading to acidification of the oceans, which has already been observed through direct measurements. These changes in the ocean carbon system are a cause for concern for the future health of marine ecosystems. A coordinated ocean acidification (OA) monitoring programme is needed that integrates physical, biogeochemical, and biological measurements to concurrently observe the variability and trends in ocean carbon chemistry and evaluate species and ecosystems response to these changes. This report arises from an OSPAR request to ICES for advice on this matter. It considers the approach and tools available to achieve coordinated monitoring of changes in the carbon system in the ICES marine area, i.e. the Northeast Atlantic and Baltic Sea. An objective is to measure long-term changes in pH, carbonate parameters, and saturation states (Ωaragonite and Ωcalcite) in support of assessment of risks to and impacts on marine ecosystems. Painstaking and sensitive methods are necessary to measure changes in the ocean carbonate system over a long period of time (decades) against a background of high natural variability. Information on this variability is detailed in this report. Monitoring needs to start with a research phase, which assesses the scale of short-term variability in different regions. Measurements need to cover a range of waters from estuaries and coastal waters, shelf seas and ocean-mode waters, and abyssal waters where sensitive ecosystems may be present. Emphasis should be placed on key areas at risk, for example high latitudes where ocean acidification will be most rapid, and areas identified as containing ecosystems and habitats that may be vulnerable, e.g. cold-water corals. In nearshore environments, increased production resulting from eutrophication has probably driven larger changes in acidity than CO2 uptake. Although the cause is different, data are equally required from these regions to assess potential ecosystem impact. Analytical methods to support coordinated monitoring are in place. Monitoring of at least two of the four carbonate system parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pCO2, and pH) alongside other parameters is sufficient to describe the carbon system. There are technological limitations to direct measurement of pH at present, which is likely to change in the next five years. DIC and TA are the most widely measured parameters in discrete samples. The parameter pCO2 is the most common measurement made underway. Widely accepted procedures are available, although further development of quality assurance tools (e.g. proficiency testing) is required. Monitoring is foreseen as a combination of low-frequency, repeat, ship-based surveys enabling collection of extended high quality datasets on horizontal and vertical scales, and high-frequency autonomous measurements for more limited parameter sets using instrumentation deployed on ships of opportunity and moorings. Monitoring of ocean acidification can build on existing activities summarized in this report, e.g. OSPAR eutrophication monitoring. This would be a cost-effective approach to monitoring, although a commitment to sustained funding is required. Data should be reported to the ICES data repository as the primary data centre for OSPAR and HELCOM, thus enabling linkages to other related datasets, e.g. nutrients and integrated ecosystem data. The global ocean carbon measurement community reports to the Carbon Dioxide Information Analysis Center (CDIAC), and it is imperative that monitoring data are also reported to this database. Dialogue between data centres to facilitate an efficient “Report-Once” system is necessary

    The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export

    Get PDF
    A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43−, 34% of NO3− and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients

    The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes

    No full text
    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG), induce an IgM response resulting in an accelerated blood clearance (ABC) of the liposome upon the second injection. Modification of liposomes with other water-soluble polymers: HPMA (poly[N-(2-hydroxypropyl) methacrylamide]), PVP (poly(vinylpyrrolidone)), PMOX (poly(2-methyl-2-oxazoline)), PDMA (poly(N,N-dimethyl acrylamide)), and PAcM (poly(N-acryloyl morpholine)), increase circulation times of liposomes; but a precise comparison of their ability to promote long circulation or induce the ABC effect has not been reported. To obtain a more nuanced understanding of the role of polymer structure/MW to promote long circulation, we synthesized a library of polymer diacyl chain lipids with low polydispersity (1.04–1.09), similar polymer molecular weights (2.1–2.5 kDa) and incorporated them into 100 nm liposomes of a narrow polydispersity (0.25–1.3) composed of polymer-lipid/hydrogenated soy phosphatidylcholine/cholesterol/diD: 5.0/54.5/40/0.5. We confirm that HPMA, PVP, PMOX, PDMA and PAcM modified liposome have increased circulation times in rodents and that PVP, PDMA, PAcM do not induce the ABC effect. We demonstrate for the first time, that HPMA does not cause an ABC effect whereas PMOX induces a pronounced ABC effect in rats. We find that a single dose of liposomes coated with PEG and PMOX generate an IgM response in rats towards the respective polymer. Finally, in this homologous polymer series, we observe a positive correlation (R = 0.84 in rats, R = 0.92 in mice) between the circulation time of polymer-modified liposomes and polymer viscosity; PEG and PMOX, the polymers that can initiate an ABC response were the two most viscous polymers. Our findings suggest that that polymers that do not cause an ABC effect such as, HPMA or PVP, deserve further consideration as polymer coatings to improve the circulation of liposomes and other nanoparticles
    corecore